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A B S T R A C T

Objective: The emergence of ischaemic post-conditioning (IPO) provides a potential method for

experimentally and clinically attenuating various types of organ injuries. There has been little work,

however, examining its effects in the setting of lung ischaemia reperfusion (IR). Stress protein, haeme

oxygenase-1 (HO-1), has been found to exert a potent, protective role in a variety of lung injury models.

In this study, we hypothesised that the induction of HO-1 by IPO plays a protective role against the

deleterious effects of IR in the lung.

Methods: Anaesthetised and mechanically ventilated adult Sprague–Dawley rats were randomly

assigned to one of the following groups (n = 8 each): the sham-operated control group, the IR group

(40 min of left-lung ischaemia and 105 min of reperfusion), the IPO group (three successive cycles of 30-s

reperfusion per 30-s occlusion before restoring full perfusion) and the ZnPPIX + IPO group (ZnPPIX, an

inhibitor of HO-1, was injected intra-peritoneally at 20 mg kg�1 24 h prior to the experiment and the rest

of the procedures were similar to that of the IPO group). Lung injury was assessed by arterial blood gas

analysis, wet-to-dry weight ratio and tissue histological changes. The extent of lipid peroxidation was

determined by measuring plasma levels of malondialdehyde (MDA) production. Expression of HO-1 was

determined by immunohistochemistry.

Results: Lung IR resulted in a significant reduction of PaO2 (data in IR, P < 0.05 vs. data in sham) and

increase of lung wet-to-dry weight ratio, accompanied with increased MDA production and severe lung

pathological morphological changes as well as a compensatory increase in HO-1 protein expression, as

compared with sham (All P < 0.05). IPO markedly attenuated all the above pathological changes seen in

the IR group and further increased HO-1 expression. Treatment with ZnPPIX abolished all the protective

effects of post-conditioning.

Conclusion: It may be concluded that IPO protects IR-induced lung injury via induction of HO-1.

� 2009 Elsevier Ltd. All rights reserved.
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OPulmonary ischaemia–reperfusion (IR) injury occurs after
various clinical procedures, including lung transplantation,
cardiopulmonary bypass, pulmonary thrombo-endarterectomy
and trauma.3 IR injury of the lung causes significant morbidity
and mortality and is characterised by neutrophil extravasation,
interstitial oedema, disruption of epithelial integrity and
leakage of protein into the alveolar space that are associated
with severe alterations in gas exchange.30 In the past several
decades, extensive studies have demonstrated beneficial
effects of ischaemic and pharmacological pre-conditioning in
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reducing the extent of lung injury.10,31,37 However, the clinical
applicability of pre-conditioning has been limited in condition,
that is, only when the occurrence of ischaemic event is
predictable.

Recent studies of the heart have demonstrated that brief
intermittent cycles of ischaemia alternating with reperfusion
applied after the prolonged ischaemic event attenuated myocar-
dial injury.13,41 The novel approach for myocardial protection has
been termed ‘ischaemic post-conditioning’ (IPO). Subsequently,
beneficial effects of IPO were shown in a wide range of organs,
including the heart, brain, spinal cord, liver, kidney and skeletal
muscle.11,19,28,34,40 Despite the emergence of post-conditioning as
a potential alternative method for experimentally and clinically
attenuating various types of organ injuries, it remains unknown
whether post-conditioning can confer protective effects against IR
injury in the lung.
itioning protects lung from ischaemia–reperfusion injury by up-
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Haeme oxygenase (HO) belongs to the heat-shock protein
family. It is the rate-limiting enzyme that catalyses the NADPH, O2

and cytochrome P450 reductase-dependent oxidation of haeme to
carbon monoxide (CO), iron and billiverdin.5 To date, three
isoforms of HO have been identified (HO-1, HO-2 and HO-3).
HO-1 is a stress-responsive protein induced by various oxidative
agents; HO-2 and HO-3 genes are constitutively expressed.4

Accumulating data have demonstrated a cytoprotective role of HO-
1 in various in vivo and in vitro pulmonary disease models,
including IR injury.25,38 In this study, we hypothesised that IPO
may confer protection against lung IR injury and that induction of
HO-1 expression may play an essential role in post-conditioning-
mediated lung protection.

Materials and methods

Animals

The experimental procedures and protocols used in this
investigation were approved by the Animal Use Committee at
Wuhan University. Specific pathogen-free Sprague–Dawley (SD)
rats of either sex, weighing between 190 and 230 g, were housed
under constant temperature (23 � 1 8C) with 12-h light/dark cycles.
All rats were fed with water and rodent chows ad libitum.

Surgical procedure and experimental protocol

The animals were anaesthetised with 7% chloral hydrate
(5 ml kg�1, i.p.). A 14-gauge angiocatheter was inserted into the
trachea through a midline neck incision. The animals were then
connected to a volume-controlled ventilator (DW-2000, Jiapeng
Keji, Shanghai, China) with room air at a breath rate of 40 min�1, a
tidal volume of 12 ml kg�1 and a positive end-expiratory pressure
of 2 cm H2O. The left femoral vein was catheterised and 3:1
crystalloid to colloidal fluid mixture was infused intravenously.
The right femoral artery was catheterised for continuous
monitoring of mean arterial pressure (MAP) and for blood
sampling. A heating pad was applied during anaesthesia in order
to keep the body temperature between 36.5 8C and 37.5 8C.

The animals were randomly assigned to one of the four
groups. Under aseptic conditions, an in situ unilateral lung warm
ischaemia model was used. In brief, a left anterolateral
thoracotomy in the fifth intercostal space was made. The left
lung was mobilised, the pulmonary hilum was dissected and
perivascular and peribronchial tissues were removed. Then, all
animals received 500 U kg�1 of heparin intravenously in saline
(total volume 500 ml). In group 1 (sham), animals underwent a
sham thoracotomy and hilar dissection, but the lungs were not
rendered ischaemic. In group 2 (IR), 5 min after heparin
administration, the left pulmonary artery, bronchus and pul-
monary vein were occluded with a non-crushing microvascular
clamp, maintaining the lung in a partially inflated state. Lungs
were kept moist with periodic applications of warm, sterile
saline, and the incision was covered to minimise evaporative
losses. The period of ischaemia was held constant at 40 min, after
which the clamp was removed and the lung re-perfused for up to
105 min. In group 3 (IPO), post-conditioning was performed by
three successive cycles of 30-s reperfusion per 30-s occlusion,
starting immediately after release of the index ischaemia. In
group 4 (zinc protoporphyrin IX + IPO group, ZnPPIX + IPO), rats
were intra-peritoneally injected with zinc protoporphyrin IX
(Sigma, USA), a specific HO-1 inhibitor, at a dose of 20 mg kg�1

24 h prior to the experiment and the rest of the procedures were
similar to that of the IPO group. The rats, which were not
administered with any preoperative treatment of ZnPPIX, were
injected with an isovolume of normal saline.
Please cite this article in press as: Xia Z-y, et al. Ischaemic post-cond
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Arterial blood gas analysis

Arterial blood sample for blood gas analysis were taken at
20 min of mechanical ventilation (baseline) and 105 min after
reperfusion (postoperative). Arterial blood specimens were
analysed for PaO2 and PaCO2 using blood gas analyser.

Lung wet-to-dry weight ratio

At the end of the experiments, the left lower lobe of the lung
was dissected and dried at a constant temperature of 80 8C for 24 h
to obtain a dehydrated consistency. The ratio of wet weight to dry
weight (W/D) was calculated to assess tissue oedema, as described
previously.36

Lung histopathological analysis

At the end of the experiments, the left upper lobe of lung was
fixed in 10% buffered formalin and 4-mm sections were prepared
from paraffin-embedded tissues. The level of histological tissue
injury was assessed by haematoxylin–eosin (H&E) staining using
light microscopy. For each animal, three random tissue sections
(eight fields per section) were examined. The severity of lung
injury was graded by an investigator who was initially blinded to
research groups, using a four-point scale according to combined
assessments of amount of alveolar congestion, haemorrhage,
infiltration or aggregation of neutrophils in the airspace or vessel
wall, and thickness of alveolar wall/hyaline membrane forma-
tion.29 The following criteria were considered: 0 = no damage,
l = mild damage, 2 = moderate damage and 3 = severe damage.

Immunohistochemical staining for HO-1

The expression of HO-1 was determined by immunohisto-
chemistry. After deparaffinisation, endogenous peroxidase was
quenched with 0.3% H2O2 in 60% methanol for 30 min. The
sections were permeabilised with 0.1% Triton X-100 in phos-
phate-buffered saline for 20 min. Nonspecific absorption was
minimised by incubating the section in 2% normal goat serum in
phosphate-buffered saline for 20 min. The sections were then
incubated overnight with 1:500 dilution of primary rabbit anti-
HO-1 polyclonal antibody (Boster Bio-Tech, Wuhan, China),
followed by biotin-conjugated secondary antibody at 1:1000
dilutions. Finally, the sections were incubated with avidin–biotin
complex kit (Boster Bio-Tech, Wuhan, China) and detected by
using a diaminobenzidine (DAB) reagent (Boster Bio-Tech,
Wuhan, China).

The slides were examined in 400-fold magnification by light
microscopy (Olympus BX50 microphotographic system, Japan) by
an investigator who was blinded to research groups. For each
animal, three random tissue sections (eight fields per section) were
examined. Quantitative immunohistochemical assessments for
lung HO-1 expression were performed as previously described.36 A
mean optical density (OD), which relates to immunohistochemical
staining intensity, was measured by image cytometry with HIPAS-
2000 image analysis software (Qianli Technical Imaging, Wuhan,
China).

Determination of lipid peroxidation

The plasma lipid peroxidation contents were assayed by the
measurement of MDA, an end product of fatty-acid peroxidation.
At 105 min after reperfusion, plasma was isolated from fresh blood
samples by centrifugation at 4000 rpm for 10 min at 4 8C. Plasma
MDA content was determined by the thiobarbituric acid reaction
using a commercial kit (Jiancheng Biological, Nanjing, China), as
itioning protects lung from ischaemia–reperfusion injury by up-
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Fig. 1. Effect of ischaemic post-conditioning on PaO2 (A) and PaCO2 (B). Arterial

blood sample was taken at 20 min of mechanical ventilation (baseline) and 105 min

after reperfusion (postoperative). Results are expressed as mean � S.D. of eight

experiments.; #P < 0.01, vs. sham group, *P < 0.01, vs. IPO group; §P < 0.05 or

P < 0.001 vs. baseline value.

Fig. 2. Effect of ischaemic post-conditioning on lung wet-to-dry weight ratio.

Results are expressed as mean � S.D. of eight experiments. #P < 0.001 vs. Sham group,
*P < 0.01 or P < 0.001 vs. IPO group.
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described previously.18 The OD was measured at 532 nm. The
values of MDA level were expressed as nanomoles per millilitre.

Statistical analysis

Parametric data were expressed as means � S.D. Statistical
comparisons within groups were analysed by using paired Student’s
t-test. Comparisons for multiple groups were analysed by using one-
way analysis of variance (ANOVA) followed by the Bonferroni’s
multiple t-test. Lung injury score was presented as median (range)
and analysed with Kruskal–Wallis rank test. P < 0.05 was considered
statistically significant.

Results

Changes in haemodynamics and blood gas analysis

All animals were haemodynamically stable during the experi-
mental procedure (data not shown). The effect of IPO on lung
function as measured by PaO2 is shown in Fig. 1A. No group
differences in the values of PaO2 were observed at baseline
(P > 0.05). No substantial changes in PaO2 were observed in the
sham group (P > 0.05). At 105 min of reperfusion, PaO2 signifi-
cantly decreased in the IR, the IPO and the ZnPPIX + IPO (P < 0.05
or P < 0.001 vs. respective baseline values) groups. However, the
IPO group had significantly higher PaO2 compared with the IR
(P < 0.01) and the ZnPPIX + IPO groups (P < 0.01), respectively.
There was no significant difference in the value of PaO2 between
the IR group and the ZnPPIX + IPO group (P > 0.05). PaCO2 level
(Fig. 1B) at 105 min of reperfusion was significantly higher in the IR
(P < 0.01) and the ZnPPIX + IPO (P < 0.01) groups compared with
the sham group, but there was no statistical difference between the
IPO group and the sham group (P > 0.05).

Lung wet-to-dry weight ratio

The effects of IR on the lung wet-to-dry weight ratio are
illustrated in Fig. 2. Lungs exposed to IR (group IR) had significantly
higher lung wet-to-dry weight ratio compared with the sham
group (P < 0.001). IPO significantly prevented the marked increase
in wet-to-dry weight ratio in response to exposure to IR (P < 0.001
IPO vs. IR group). However, administration of ZnPPIX prior to the
induction of IPO did not alter the tissue wet-to-dry weight ratio
levels when compared to the IR group (P > 0.05, ZnPPIX + IPO vs. IR
group). The IPO group had significantly lower wet-to-dry weight
ratio compared with the IR (P < 0.001) and the ZnPPIX + IPO
(P < 0.01) groups, respectively.

Lung histopathological changes

The histopathological changes in the left upper lobe of lung
tissues at the end of reperfusion were assessed by standard H&E
staining. Representative pictures of lung sections from each group
are shown in Fig. 3. No histological alteration was observed in the
lung sections from sham-operated rats (Fig. 3A). The IR group
showed acute lung injury characterised by areas of necrosis,
neutrophilic inflammation and intra-alveolar and interstitial
oedema (Fig. 3B). The IPO group revealed markedly reduced
neutrophilic inflammation and interstitial oedema with preserva-
tion of alveoli compared with the IR group (Fig. 3C). However,
when ZnPPIX, a specific inhibitor of HO-1 activity, was adminis-
tered prior to IPO, the destruction of lung tissue was more severe
and neutrophilic inflammation was higher as compared to the IPO
group (Fig. 3D). The lung injury scores were 2.3(1.0), 8.0(2.3),
5.5(1.6) and 9.9(2.0) in the sham, IR, IPO and ZnPPIX + IPO groups,
respectively (Fig. 3E). The lung injury score in the IR group was
Please cite this article in press as: Xia Z-y, et al. Ischaemic post-cond
regulation of haeme oxygenase-1. Injury (2009), doi:10.1016/j.injur
TE
Dhigher than that in the sham control group (P < 0.001, IR vs. sham

group) and was reduced by IPO (P < 0.05, IPO vs. IR group). The
difference in lung injury score between the IR and ZnPPIX + IPO
groups was not significant (P > 0.05).

Expression of HO-1 protein in the lungs

As shown in Fig. 4, a very small amount of HO-1 was detected in
alveolar macrophage cells of sham group. Significantly increased
expressions of HO-1 protein were observed in group IR (P < 0.001,
vs. sham) and group IPO (P < 0.001, vs. sham), respectively. When
compared to group IR, group IPO had significant higher expression
of HO-1 (P < 0.05). Pre-administration with ZnPPIX almost
completely abolished the induction of the expression of HO-1
(P < 0.001, ZnPPIX + IPO vs. IPO group).

MDA level

The production of MDA is an indicator for lipid peroxidation and
development of oxidative stress. As shown in Fig. 5, at 105 min of
reperfusion, MDA level in IR group was significantly higher than
that in sham group (P < 0.001). IPO significantly prevented the
itioning protects lung from ischaemia–reperfusion injury by up-
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Fig. 3. Effect of ischaemic post-conditioning on lung histology. (A) sham operation group (group S), (B)ischaemia/reperfusion group (group I/R), (C) ischaemic post-

conditioning group (group IPO), (D) zinc protoporphyrin IX + ischaemic post-conditioning group (group ZnPPIX + IPO), (E) Lung injury score in each group. Results are

expressed as median (range) of eight experiments. #P < 0.05 or P < 0.001 vs. sham group, *P < 0.05 vs. group IPO.
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(P < 0.001, IPO vs. I/R group). HO-1 inhibitor, ZnPPIX, reversed the
reductions of MDA in IPO (P < 0.001, ZnPPIX + IPO vs. IPO group).

Discussion

In the present study, IPO improved pulmonary oxygenation,
reduced lung wet-to-dry weight ratio, MDA concentrations and
histological damage. The protective effects induced by post-
conditioning were accompanied by a specific, marked lung
Please cite this article in press as: Xia Z-y, et al. Ischaemic post-cond
regulation of haeme oxygenase-1. Injury (2009), doi:10.1016/j.injur
expression of HO-1. These protective effects were blocked by an
HO-1 inhibitor (ZnPPIX), suggesting that HO-1 mediated the
protective effects of lung IPO.

Post-conditioning is a recently described novel approach to
attenuate IR injury and may have greater clinical potential than
pre-conditioning. The concept of IPO was originally described by
Zhao et al., who showed that brief intermittent episodes of
myocardial IR performed at the onset of reperfusion, reduced
infarct size in the canine heart.41 In the current study, post-
conditioned lungs showed only slight damage after a sustained IR
itioning protects lung from ischaemia–reperfusion injury by up-
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Fig. 4. Effect of ischaemic post-conditioning on lung HO-1 expression. (A) Sham operation group (group S), (B) ischaemia/reperfusion group (group I/R),

(C) ischaemic post-conditioning group (group IPO), (D) zinc protoporphyrin IX + ischaemic post-conditioning group (group ZnPPIX + IPO). (E) Quantitative

densitometric data of HO-1 expression in each group. Results are expressed as mean � S.D. of eight experiments. #P < 0.001 vs. sham group, ~P < 0.05 vs. group I/R,
*P < 0.001 vs. group IPO.
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per 30-s re-occlusion by the action of clamping and unclamping of
the hilum of the left lung. However, it is unclear whether the
number of cycles imposed affects the pulmonary protection effects
of post-conditioning. Previous studies in the myocardium, from
different species, revealed that post-conditioning lost its protec-
tion when it is initiated after 60–90 s of full reperfusion.13,24

Therefore, it seems important that the post-conditioning stimulus
must be applied immediately upon relief of sustained ischaemia.

Although the protective methods differ in timing and adaptive
changes between pre-conditioning and post-conditioning, a
number of studies have suggested that both protective man-
Please cite this article in press as: Xia Z-y, et al. Ischaemic post-cond
regulation of haeme oxygenase-1. Injury (2009), doi:10.1016/j.injur
oeuvres share some, but not all, mechanisms.23,33 In the studies of
pulmonary ischaemic pre-conditioning, receptor-mediated signal-
ling pathways, including bradykinin,20 adenosine,37 peroxyni-
trite31 as well as ATP-sensitive potassium channels,7 were found to
be involved in the mechanism of lung protection. The protective
effect of pulmonary IPO may foster further extensive studies
exploring the underling mechanisms.

In this study, we found that the protective effect of lung IPO is
mediated, at least in part, by HO-1. IPO attenuated the increase in
necrosis, neutrophilic inflammation, and intra-alveolar and inter-
stitial oedema. Lung tissue wet-to-dry weight ratios and blood gas
exchanges were affected by IPO in a pattern similar to the changes
itioning protects lung from ischaemia–reperfusion injury by up-
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Fig. 5. Effect of ischaemic post-conditioning on blood malondialdehyde level

expressed as nmol/ml. Blood samples were taken at 105 min after reperfusion.

Results are expressed as mean � S.D. of eight experiments. #P < 0.001 vs. sham group,
*P < 0.001 vs. group IPO.
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of pulmonary histology. Plasma MDA level, reflecting the
magnitude of lung oxidative injury following IR,1,35 was also
significantly decreased in IPO group. IPO induced up-regulation of
HO-1, while HO-1 inhibitor (ZnPPIX) reversed the protective
effects of IPO, associated with down-regulation of HO-1 expres-
sion. Therefore, the present study demonstrated that HO-1 might
be responsible for the protective effect of IPO against IR-induced
lung injury.

The beneficial effects of HO-1 induction have been shown to
confer protection against lung injury in a variety of experimental
models. Using genetic approaches, previous studies have demon-
strated that overexpression of HO-1 can attenuate severe lung
injury in mice induced by hyperoxia, lipopolysaccharide and
influenza virus infection, and so on.8,9,22 In vitro studies have also
shown that the overexpression of HO-1 in rat foetal lung cells or
human lung epithelial cells prevents apoptosis in response to
increased oxygen tension.16 In addition, chemical induction of HO-
1 was found to protect the lung against the pulmonary injury.10,17

Conversely, inhibition of HO-1 was suggested to be potentially
detrimental. Otterbein et al. first demonstrated that pharmacolo-
gical inhibition of HO-1 activity enhanced the susceptibility of rats
to lung injury from endotoxaemia.21 Fujita et al. showed that HO-
1-deficient (Hmox1�/�) mice exhibit lethal ischaemic lung
injury.6 Zhang et al. showed that specific knockdown of HO-1
expression using small-interfering RNA in vitro and in vivo

significantly increased anoxia–re-oxygenation- and IR-induced
apoptosis, respectively.39 The findings of the current study have
added an insight into the association of HO-1 expression with IPO
in the lung.

The mechanisms by which HO-1 induces cytoprotection against
IR injury of the lung are not completely understood, but appear to
involve the protective effects of HO-1 by-products, CO, biliverdin/
bilirubin and free iron.5 CO is produced via haeme catabolism by
HO-1 and plays a protective role in lung injury. At low
concentrations, CO can confer anti-apoptotic, anti-inflammatory
and vasodilatory effects via activation of intracellular signalling
pathways, which include soluble guanylate cyclase and/or p38
mitogen-activated protein kinase.14,15,25 Besides, bilirubin,
another end product of haeme catabolism, also contributes to
the protective effect of HO-1. Bilirubin has been shown to protect
against acute lung injury caused by endotoxaemia.12,26 The
protective effects of bilirubin in IR injury are due to its antioxidant
properties.27 In addition, cytoprotection by HO-1 is attributable to
its augmentation of iron efflux. The HO-dependent release of iron
results in the up-regulation of ferritin, which in turn limits the
capacity of iron to generate reactive oxygen species (ROS) and iron-
based free radicals.2,32
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In summary, we demonstrated for the first time that lung IPO
attenuated the severity of lung injury induced by IR in the rat. The
protective effect of IPO is mediated in part through the induction of
endogenous HO-1, and may suggest a potential target for the
development of therapeutic strategies to prevent lung IR injury.
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