21,375 research outputs found

    Special Algorithm for Stability Analysis of Multistable Biological Regulatory Systems

    Full text link
    We consider the problem of counting (stable) equilibriums of an important family of algebraic differential equations modeling multistable biological regulatory systems. The problem can be solved, in principle, using real quantifier elimination algorithms, in particular real root classification algorithms. However, it is well known that they can handle only very small cases due to the enormous computing time requirements. In this paper, we present a special algorithm which is much more efficient than the general methods. Its efficiency comes from the exploitation of certain interesting structures of the family of differential equations.Comment: 24 pages, 5 algorithms, 10 figure

    Generic Regular Decompositions for Parametric Polynomial Systems

    Full text link
    This paper presents a generalization of our earlier work in [19]. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in [19] for generic zero-dimensional systems, are extended to the case where the parametric systems are not necessarily zero-dimensional. An algorithm is provided to compute GRDs and the associated RDU varieties of parametric systems simultaneously on the basis of the algorithm for generic zero-dimensional systems proposed in [19]. Then the solutions of any parametric system can be represented by the solutions of finitely many regular systems and the decomposition is stable at any parameter value in the complement of the associated RDU variety of the parameter space. The related definitions and the results presented in [19] are also generalized and a further discussion on RDU varieties is given from an experimental point of view. The new algorithm has been implemented on the basis of DISCOVERER with Maple 16 and experimented with a number of benchmarks from the literature.Comment: It is the latest version. arXiv admin note: text overlap with arXiv:1208.611

    Cultivation of Chinese EFL Learners’ Native Cultural Identity in the New Era

    Get PDF
    Identity and culture are important aspects in language teaching and learning. For the majority of Chinese college students, learning a foreign language is compulsory. In the process of learning, western values, ideology, behavior patterns and life styles may exert a subtle influence on their cultural identity. Chinese college students have a dual cultural identity. Despite their high degree of recognition with the western culture, they have absolute confidence in their native culture. The traditional one-way input of target language culture and the absence of native language culture in foreign language teaching should be changed in the new era

    Leveraging Social Foci for Information Seeking in Social Media

    Full text link
    The rise of social media provides a great opportunity for people to reach out to their social connections to satisfy their information needs. However, generic social media platforms are not explicitly designed to assist information seeking of users. In this paper, we propose a novel framework to identify the social connections of a user able to satisfy his information needs. The information need of a social media user is subjective and personal, and we investigate the utility of his social context to identify people able to satisfy it. We present questions users post on Twitter as instances of information seeking activities in social media. We infer soft community memberships of the asker and his social connections by integrating network and content information. Drawing concepts from the social foci theory, we identify answerers who share communities with the asker w.r.t. the question. Our experiments demonstrate that the framework is effective in identifying answerers to social media questions.Comment: AAAI 201

    Cold storage condensation heat recovery system with a novel composite phase change material

    Get PDF
    © 2016 Elsevier Ltd. Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively. During both processes, CW could retain its original worm-like structure after being completely adsorbed by EG. Compared to only CW, the melting and solidification time of the CW/EG composite were reduced by 81.7% and 55.3%, respectively, while its thermal conductivity was 16.4 times higher. After 1000 runs of accelerated thermal cycling, the endothermic/exothermic phase change temperatures of CW and the CW/EG composite increased by only 0.42%/0.42% and 0.23%/0.27%, respectively, while their endothermic/exothermic latent heats decreased by 4.96%/4.78% and 2.05%/3.44%, respectively. These results indicate that both CW and the CW/EG composite have excellent thermal reliability, while the CW/EG composite exhibits a slightly better performance. Finally, the experiments show that the CW/EG composite has desirable thermal and physical properties such as high thermal conductivity and reliability; Hence, it has good potenti al as a material for facilitating condensation heat recovery from cold storage refrigeration systems
    • …
    corecore