12 research outputs found

    Observation of Hybrid-Order Topological Pump in a Kekule-Textured Graphene Lattice

    Full text link
    Thouless charge pumping protocol provides an effective route for realizing topological particle transport. To date, the first-order and higher-order topological pumps, exhibiting transitions of edge-bulk-edge and corner-bulk-corner states, respectively, are observed in a variety of experimental platforms. Here, we propose a concept of hybrid-order topological pump, which involves a transition of bulk, edge, and corner states simultaneously. More specifically, we consider a Kekul\'e-textured graphene lattice that features a tunable phase parameter. The finite sample of zigzag boundaries, where the corner configuration is abnormal and inaccessible by repeating unit cells, hosts topological responses at both the edges and corners. The former is protected by a nonzero winding number, while the latter can be explained by a nontrivial vector Chern number. Using our skillful acoustic experiments, we verify those nontrivial boundary landmarks and visualize the consequent hybrid-order topological pump process directly. This work deepens our understanding to higher-order topological phases and broadens the scope of topological pumps.Comment: 5 figure

    Special Issue on Advances in Metamaterials for Sound and Vibration Control

    No full text
    Sound and vibration control represent critical issues in our society and research community [...

    Special Issue on Advances in Metamaterials for Sound and Vibration Control

    No full text
    Sound and vibration control represent critical issues in our society and research community [...

    Tracking valley topology with synthetic Weyl paths

    Full text link
    Inspired by the newly emergent valleytronics, great interest has been attracted to the topological valley transport in classical metacrystals. The presence of nontrivial domain-wall states is interpreted with a concept of valley Chern number, which is well defined only in the limit of small bandgap. Here, we propose a new visual angle to track the intricate valley topology in classical systems. Benefiting from the controllability of our acoustic metacrystals, we construct Weyl points in synthetic three-dimensional momentum space through introducing an extra structural parameter (rotation angle here). As such, the two-dimensional valley-projected band topology can be tracked with the strictly quantized topological charge in three-dimensional Weyl crystal, which features open surface arcs connecting the synthetic Weyl points and gapless chiral surface states along specific Weyl paths. All theoretical predictions are conclusively identified by our acoustic experiments. Our findings may promote the development of topological valley physics, which is less well-defined yet under hot debate in multiple physical disciplines.Comment: Phys.Rev.Lett. Accepte

    Seasonal Variation Characteristics of VOCs and Their Influences on Secondary Pollutants in Yibin, Southwest China

    No full text
    Volatile organic compounds (VOCs) have a crucial impact on the formation of ozone and secondary organic aerosols in the near-surface atmosphere. Understanding the composition characteristics and sources of VOCs is necessary for determining effective control policies to mitigate VOCs and related secondary pollutions. We performed on-line measurements of VOC species in typical months of each season in Yibin, a fast-growing city in Sichuan Basin in China, to identify VOC seasonal characteristics, sources, and the potential for secondary pollution formation. The average mixing ratio of VOCs in Yibin was 22.3 ppbv. Five major emission sources were identified through the positive matrix factorization model, namely, gasoline vehicle, diesel vehicle, industrial manufacturing, solvent utilization, regional background, and secondary formation. Aromatics and alkenes played leading roles in the secondary formation of ozone and secondary organic aerosols. Furthermore, m/p-xylene, ethylene, and toluene were identified to be the major reactive species. Future management should consider targeting these compounds when evaluating ozone and aerosol reduction strategies. Vehicle and solvent utilization emission mitigation would be the primary and effective ways to improve air quality in the fast-developing city in this region

    LUAI challenge 2021 on learning to understand aerial images

    Get PDF
    This report summarizes the results of Learning to Understand Aerial Images (LUAI) 2021 challenge held on ICCV'2021, which focuses on object detection and semantic segmentation in aerial images. Using DOTA-v2.0 [7] and GID-15 [35] datasets, this challenge proposes three tasks for oriented object detection, horizontal object detection, and semantic segmentation of common categories in aerial images. This challenge received a total of 146 registrations on the three tasks. Through the challenge, we hope to draw attention from a wide range of communities and call for more efforts on the problems of learning to understand aerial images
    corecore