16 research outputs found

    Linkages between nitrogen cycling, nitrogen isotopes, and environmental properties in paleo-lake basins

    Get PDF
    This work was funded by the National Natural Science Foundation of China (no. 41830425). E.E. Stüeken acknowledges funding from a Natural Environment Research Council grant (no. NE/V010824/1).The linkages between nitrogen cycling, nitrogen isotopes, and environmental properties are fundamental for reconstructing nitrogen biogeochemistry. While the impact of ocean redox changes on nitrogen isotopes is relatively well understood, it is poorly known how nitrogen responds to changes in pH and salinity. To fill the knowledge gap, we explore the effects of these environmental parameters using a well-controlled set of samples from Carboniferous−Paleogene lake sediments in China. Our results show that the threshold of 10−12‰ in δ15N works to distinguish alkaline (pH > 9) from circum-neutral conditions. Elevated Mo levels in the alkaline samples support the idea of NH3 volatilization from a reducing water column in an alkaline setting. For non-alkaline lakes, δ15N values tend to be higher (up to +10‰) in more saline, anoxic settings, which is attributed to either the expansion of stagnant anoxic waters spurring water-column denitrification or a shift from plant-based toward more microbially dominated ecosystems or both. Our results imply that salinity-induced redox stratification and basicity can alter nitrogen biogeochemical cycling beyond what is shown by the marine nitrogen isotope record alone. This finding will result in an improved understanding of the dynamic controls of δ15N in sediments and lead to better biogeochemical interpretations of paleo-environmental conditions from unknown environmental settings on Earth and beyond Earth.PostprintPeer reviewe

    Effects on global warming by microbial methanogenesis in alkaline lakes during the Late Paleozoic Ice Age (LPIA)

    Get PDF
    This work was jointly funded by the National Natural Science Foundation of China (Grant Nos . 42230808, 42203055 and 41830425) and PetroChina Science and Technology Major project (Grant No. 20 21DJ0108).Methane (CH4) is an important greenhouse gas, but its behavior and influencing factors over geological time scales are not sufficiently clear. This study investigated the Late Paleozoic Ice Age (LPIA), which is thought to have experienced an interval of rapid warming at ca. 304 Ma, that may have been analogous to modern warming. To explore possible causes of this warming event, we investigated ancient alkaline lakes in the Junggar Basin, northwestern China. Results show that microbial CH4 cycling here was strong, as evidenced by carbonate δ13C (δ13Ccarb) values of >5‰, ∼+0.6‰ offsets between pristane δ13C (δ13CPr) and phytane δ13C (δ13CPh) values, a 3β-methylhopane index of 9.5% ± 3.0%, and highly negative δ13C values of hopanes (−44‰ to −61‰). Low sulfate concentrations in the alkaline lakes made methanogenic archaea more competitive than sulfate-reducing bacteria, and the elevated levels of dissolved inorganic carbon promoted methanogenesis. Biogenic CH4 emissions from alkaline lakes, in addition to CO2, may have contributed to rapid climate warming.PostprintPeer reviewe

    Supplemental Material: Effects on global warming by microbial methanogenesis in alkaline lakes during the Late Paleozoic Ice Age (LPIA)

    No full text
    Additional details on geological setting, samples, methods, results, mechanisms for proxies, evaluation of microbial CH4 emissions, Figures S1–S3, and Tables S1–S2. </p

    Linkages between nitrogen cycling, nitrogen isotopes, and environmental properties in paleo-lake basins

    No full text
    The linkages between nitrogen cycling, nitrogen isotopes, and environmental properties are fundamental for reconstructing nitrogen biogeochemistry. While the impact of ocean redox changes on nitrogen isotopes is relatively well understood, it is poorly known how nitrogen responds to changes in pH and salinity. To fill the knowledge gap, we explore the effects of these environmental parameters using a well-controlled set of samples from Carboniferous−Paleogene lake sediments in China. Our results show that the threshold of 10−12‰ in δ15N works to distinguish alkaline (pH &gt; 9) from circum-neutral conditions. Elevated Mo levels in the alkaline samples support the idea of NH3 volatilization from a reducing water column in an alkaline setting. For non-alkaline lakes, δ15N values tend to be higher (up to +10‰) in more saline, anoxic settings, which is attributed to either the expansion of stagnant anoxic waters spurring water-column denitrification or a shift from plant-based toward more microbially dominated ecosystems or both. Our results imply that salinity-induced redox stratification and basicity can alter nitrogen biogeochemical cycling beyond what is shown by the marine nitrogen isotope record alone. This finding will result in an improved understanding of the dynamic controls of δ15N in sediments and lead to better biogeochemical interpretations of paleo-environmental conditions from unknown environmental settings on Earth and beyond Earth

    A new constraint on the antiquity of ancient haloalkaliphilic green algae that flourished in a ca. 300 Ma Paleozoic lake

    No full text
    It is established that green algae and land plants progressively colonized freshwater and terrestrial habitats throughout the Paleozoic Era, but little is known about the ecology of Paleozoic saline lakes. Here, we report lipid biomarker and petrographic evidence for the occurrence of a green alga as a major primary producer in a late Paleozoic alkaline lake (Fengcheng Formation; 309–292 Ma). A persistently saline and alkaline lacustrine setting is supported by mineralogical and lipid biomarker evidence alongside extremely enriched δ15Nbulk values (+16 to +24‰) for the lake depocenter. The prominence of C28 and C29 steroids, co-occurring with abundant carotene-derived accessory pigment markers in these ancient rocks, is suggestive of prolific primary production and elevated source inputs from haloalkaliphilic green algae. The high C28/C29-sterane ratios (0.78–1.29) are significantly higher than the typical marine value reported for late Paleozoic rocks (&lt;0.5) and thus are associated with certain groups of chlorophytes. Adaptation to such extreme lacustrine environments, aided by enhanced biosynthesis of certain cell membrane lipids, likely played an important role in the evolution and physiological development of ancient green algae.</p

    Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids : a multi-proxy geochemical study

    Get PDF
    We thank the editor Dr. Hailiang Dong and three anonymous reviewers for their insightful comments and suggestions which greatly improved the manuscript. We thank technical staffs from the Research Institute of Experiment and Testing and Research Institute of Petroleum Exploration and Development of the PetroChina Xinjiang Oilfield Company for their cooperation during this study. This work was jointly funded by National Natural Science Foundation of China (Grant No. 41830425), National Science and Technology Major Project of China (Grant No. 2016ZX05003-005), and PetroChina Science and Technology Major Project (Grant No. 2017E-0401).Hyperalkaline waters display unusually high productivity, which makes them prime targets in the search for life elsewhere in the solar system. However, the formation mechanisms of alkaline waters are not well understood, because the response of biogeochemical proxies to these conditions is poorly constrained. To address this issue, we assessed the influence of hydrothermal fluids on the salinity and pH of alkaline lakes based on a case study of an early Permian paleo-alkaline lake (~290 Ma; Fengcheng Formation) in the Mahu Sag, northwestern Junggar Basin, China. Multiple proxies indicate that hydrothermal fluids in the central salt rock and marginal tuff–mudstone areas of the Fengcheng Formation were affected by deep and shallow hydrothermal fluids, respectively. A small part of the transitional area was affected by hydrothermal fluids with a hybrid nature. The hydrothermal fluid activity gradually weakened up-section in all areas while salinity (inferred from carbon and oxygen isotopes) increased and pH (inferred from nitrogen isotopes and mineralogy) decreased from hyperalkaline (>9.25) to moderately alkaline conditions. These trends suggest that hyperalkalinity was largely driven by hydrothermal processes. In contrast, evaporation, which dominated towards the end of the lake's lifetime, maintained an elevated pH but did evidently not have a similarly strong effect as hydrothermal fluids. Our data suggest that hydrothermal activity and evaporation in closed lacustrine basins have the potential to create extreme conditions for the formation of alkaline lakes. The evolution of salinity and pH may not necessarily be synchronized.PostprintPeer reviewe
    corecore