438 research outputs found

    Channel Covariance Matrix Estimation via Dimension Reduction for Hybrid MIMO MmWave Communication Systems

    Get PDF
    Hybrid massive MIMO structures with lower hardware complexity and power consumption have been considered as a potential candidate for millimeter wave (mmWave) communications. Channel covariance information can be used for designing transmitter precoders, receiver combiners, channel estimators, etc. However, hybrid structures allow only a lower-dimensional signal to be observed, which adds difficulties for channel covariance matrix estimation. In this paper, we formulate the channel covariance estimation as a structured low-rank matrix sensing problem via Kronecker product expansion and use a low-complexity algorithm to solve this problem. Numerical results with uniform linear arrays (ULA) and uniform squared planar arrays (USPA) are provided to demonstrate the effectiveness of our proposed method

    Matrix Completion-Based Channel Estimation for MmWave Communication Systems With Array-Inherent Impairments

    Get PDF
    Hybrid massive MIMO structures with reduced hardware complexity and power consumption have been widely studied as a potential candidate for millimeter wave (mmWave) communications. Channel estimators that require knowledge of the array response, such as those using compressive sensing (CS) methods, may suffer from performance degradation when array-inherent impairments bring unknown phase errors and gain errors to the antenna elements. In this paper, we design matrix completion (MC)-based channel estimation schemes which are robust against the array-inherent impairments. We first design an open-loop training scheme that can sample entries from the effective channel matrix randomly and is compatible with the phase shifter-based hybrid system. Leveraging the low-rank property of the effective channel matrix, we then design a channel estimator based on the generalized conditional gradient (GCG) framework and the alternating minimization (AltMin) approach. The resulting estimator is immune to array-inherent impairments and can be implemented to systems with any array shapes for its independence of the array response. In addition, we extend our design to sample a transformed channel matrix following the concept of inductive matrix completion (IMC), which can be solved efficiently using our proposed estimator and achieve similar performance with a lower requirement of the dynamic range of the transmission power per antenna. Numerical results demonstrate the advantages of our proposed MC-based channel estimators in terms of estimation performance, computational complexity and robustness against array-inherent impairments over the orthogonal matching pursuit (OMP)-based CS channel estimator.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Extreme Learning Machine Based Non-Iterative and Iterative Nonlinearity Mitigation for LED Communications

    Full text link
    This work concerns receiver design for light emitting diode (LED) communications where the LED nonlinearity can severely degrade the performance of communications. We propose extreme learning machine (ELM) based non-iterative receivers and iterative receivers to effectively handle the LED nonlinearity and memory effects. For the iterative receiver design, we also develop a data-aided receiver, where data is used as virtual training sequence in ELM training. It is shown that the ELM based receivers significantly outperform conventional polynomial based receivers; iterative receivers can achieve huge performance gain compared to non-iterative receivers; and the data-aided receiver can reduce training overhead considerably. This work can also be extended to radio frequency communications, e.g., to deal with the nonlinearity of power amplifiers

    Optical signal processing for fiber Bragg grating based wear sensors

    Get PDF
    In this study, we propose a simplified signal processing scheme for fiber Bragg grating (FBG) based wear sensing. Instead of using a chirped FBG and detecting the bandwidth, we use uniform gratings as sensors and measure the optical power reflected by the sensing grating to determine the length of the sensor grating, hence detect the wear. We demonstrate by the experiments that the proposed method is feasible and practical. The advantage of the proposed method lies in the fact that structure of the wear sensing system is simplified and therefore the cost can be significantly reduced. The principle of the proposed method, the design of the wear sensor, and the experiments are described

    An improved channel model for ADSL and VDSL systems

    Get PDF
    This paper examines existing channel models used with xDSL systems and identifies a key shortcoming - namely, the implicit assumption that all impulse noise originates at the transmitter. Based on extensive data collected from the local loop, a new model is proposed which addresses this problem by combining a digital filter model of the transmission line with a distributed noise source. This better reflects the nature of a real telephone line, and thus provides a more solid basis for simulation and optimisation of xDSL systems

    New approach to improve the performance of fringe pattern profilometry using multiple triangular patterns for the measurement of objects in motion

    Get PDF
    Fringe pattern profilometry using triangular patterns and intensity ratios is a robust and computationally efficient method in three-dimensional shape measurement technique. However, similar to other multiple-shot techniques, the object must be kept static during the process of measurement, which is a challenging requirement for the case of fast-moving objects. Errors will be introduced if the traditional multiple-shot techniques are used directly in the measurement of a moving object. A new method is proposed to address this issue. First, the movement of the object is measured in real time and described by the rotation matrix and translation vector. Then, the expressions are derived for the fringe patterns under the influence of the two-dimensional movement of the object, based on which the normalized fringe patterns from the object without movement are estimated. Finally, the object is reconstructed using the existing intensity ratio algorithm incorporating the fringe patterns estimated, leading to improved measurement accuracy. The performance of the proposed method is verified by experiments

    Fringe calibration using neural network signal mapping for structured light profilometers

    Get PDF
    We present a novel neural network signal calibration technique to improve the performance of triangulation based structured light profilometers. The performance of such profilometers is often hindered by the capture of noisy and aberrated pattern intensity distributions. We address this problem by employing neural networks and a spatial digital filter in a signal mapping approach. The performance of the calibration technique is gauged through both simulation and experimentation, with simulation results indicating that accuracy can be improved by more than 80%

    Spatial shift unwrapping for digital fringe profilometry based on spatial shift estimation

    Get PDF
    An approach is presented to solve the problem of spatial shift wrapping associated with spatial shift estimation-based fringe pattern profilometry (FPP). This problem arises as the result of fringe reuses (that is, use of fringes with periodic light intensity variance), and the spatial shift can only be identified without ambiguity within the range of a fringe width. It is demonstrated that the problem is similar to the phase unwrapping problem associated with the phase-detection-based FPP, and the proposed method is inspired by the existing ideas of using multiple images with different wavelengths proposed for phase unwrapping. The effectiveness of the proposed method is verified by comparing experimental results against several objects, with the last object consisting of more complex surface features. We conclude by showing that our method is successful in reconstructing the fine details of the more complex object
    • …
    corecore