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Abstract

We present a novel neural network signal calibration technique to improve the performance of
triangulation based structured light profilometers. The performance of such profilometers is often
hindered by the capture of noisy and aberrated pattern intensity distributions. We address this problem by
employing neural networks and a spatial digital filter in a signal mapping approach. The performance of
the calibration technique is gauged through both simulation and experimentation, with simulation results
indicating that accuracy can be improved by more than 80%.
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Abstract— We present a novel neural network signal cali-
bration technique to improve the performance of triangulation
based structured light profilometers. The performance of such
profilometers is often hindered by the capture of noisy and aber-
rated pattern intensity distributions. We address this problem by
employing neural networks and a spatial digital filter in a signal
mapping approach. The performance of the calibration technique
is gauged through both simulation and experimentation, with
simulation results indicating that accuracy can be improved by
more than 80%.

I. INTRODUCTION

Structured light techniques for non-contact, dynamic and
accurate profile measurement of diffuse surfaces have been
widely studied due to their potential industrial applications.
The most exploited techniques often utilise a projected peri-
odic fringe pattern composed of parallel lines. The observed
pattern is distorted by the diffuse surface in such a way that
represents information about the height of the object perpen-
dicular to the plane of observation. The distorted structured
light pattern is recorded, commonly by a CCD camera and
through computer analysis of the recorded image the object
can be recreated in 3D space, typically with a high degree
of precision. Figure 1 depicts the typical Crossed Optical
Axes geometry utilised by many traditional structured light
profilometers. Using geometrical relationships apparent in the
arrangement the physical height distribution of the object can
be extracted. Noting that A E,E.D and A ACD are similar
it can be shown that.

AC do
—h(z,y)  lo—h(z,y)
loAC
hz,y) = ——" 1
(@,9) = 47— @ M

Thus, assuming that system parameters dp and [y are
known, the aim of any profilometry algorithm is to accurately
determine spatial distance AC.

Commonly, AC' is processed as a spatial phase value
using popular Fourier Transform [1] or Phase Measuring
Profilometry [2] based techniques. These techniques require
the projection and capture of a sinusoidal intensity distribution.
When the sinusoidal intensity distribution is projected onto the
diffuse surface of interest the distribution can be regarded as
a phase modulated version of the initial reference signal, with
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Fig. 1. Typical Crossed Optical Axes profilometry arrangement

the modulation directly related to the depth distribution of
the diffuse surface. Often such structured light techniques are
nonresilient to nonlinear aberrations and other noise present
in captured fringe patterns and as a result the ability to ac-
curately determine AC is significantly hindered. These fringe
anomalies typically result from nonlinear camera / projector
intensity responses, fringe image preprocessing prior to digital
projection and camera / projector lens distortion.

Some interesting solutions utilise neural networks to directly
detect AC from fringe data [3] or in calibration applications
to enhance the ability for reconstruction algorithms to detect
AC [4], [5], [6]. In this paper we describe a neural network
calibration approach whereby an aberrated noise corrupt cap-
tured intensity distribution is spatially filtered then input to
a feed-forward backpropagation neural network trained using
non-aberrated patterns. We exploit the generalisation proper-
ties of neural networks to interpolate modulated structured
light patterns and consequentially are successfully capable
of improving the accuracy in which AC can be determined
and hence reduce surface profile reconstruction errors. The
method only requires a single image for calibration and thus
is suitable for applications such as robotic vision where rapid
calibration is required. Such an approach is desirable as it is
not limited to operation with particular pattern structures and
can successfully function independent of any reconstruction
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Fig. 2. Proposed Multilayer Signal Mapping Calibration Neural Network for
arbitrary a € M

algorithm.

II. PROPOSED CALIBRATION TECHNIQUE
1. Principle Neural Network Technique

The neural network based calibration technique endeav-
ors to reproduce captured structured light patterns devoid
of aberration from captured aberrated data via a multilayer
feedforward backpropagation neural network operating as a
nonlinear signal map. The calibration technique considers /.
a M x N digitised aberrated image of a fringe map projected
onto a reference plane. M neural networks such as that
depicted in Figure 2 are trained to function as a non-linear
signal map such that when the aberrated image [ is then
applied to the neural networks. /. a calibrated version of the
initial imagc is produced. Hence, mathematically:

(m,n) Z“m_;fl (m, u) iny ) 2)
forn=0,1,2,3....N,
andm=20,1,23...M,

where 1(m, n) is the output of the mih neural network for
the nth sample corresponding to the mth and nth sample
of the calibrated reference image. W,,, and W,,, are the
corresponding weight matrices and f;() and f2() are the
appropriate activation functions for the corresponding layers.
The M neural networks are then used to obtain calibrated
fringe images in which are then input to a structured light
reconstruction algorithm such as PMP or FTP.

Whilst neural networks can be applied to solve many
problems over a range of different disciplines due to their non-
linear mapping abilitics, in the presence of random processes
such as additive gaussian noise the performance of neural
networks for such purposes can be somewhat limited. hence.
an adequate noise removal technique is required to maximize
the performance of the neural calibration.

B. Noise Removal

Traditionally. the removal of noise from a fringe image will
involve some form of filtering, typically. the filtering will be
cither performed in the spatial frequency domain 7] via fft and
multiplying operations or in the spatial domain [8]. [9]. [10]
through convolution, adaptive or non-linear processing. Since
in spatial frequency techniques it is required to calculate the
Fourier and Inverse Fourier Transform of the signal of interest.

for real-time processing systems such as dynamic structured
light profilometers, we are more incline to employ convolutive
spatial domain techniques. Spatial domain techniques utilise
neighborhood spatial coherence and neighborhood pixel value
homogeneity as a basis. Spatial filters replace incoherent
pixel values with values more spatially coherent by using
surrounding neighboring pixels [11].

Gaussian smoothing is a noise suppression technique where
a “bell-shaped” gaussian kernel is utilised to act as a spatial
lowpass filter in which blurs an image. A typical 1-D gaussian
kernel is formed as:

»2
242

G(x) = ke™ (€)

for all = € W, where,

,I"'_'

and W is the width of the gaussian kernel. If we consider the
gaussian operator seen in equation (3) in the spatial frequency
domain it too is of similar gaussian form. In contrast to a mean
or averaging filter with a rectangular kernel which oscillates
in the spatial frequency domain, we can be confident which
spatial frequencies will be attenuated based on the selected
gaussian parameters [12].

Since the phase modulation an object introduces into a
fringe pattern is considered to be slowly varying in contrast
to the fringe carrier frequency and more importantly the
signal noise. the blurring caused by the Gaussian smoothing
process introduces minimal error provided the appropriate
kernel parameters are selected.

It is important to note that in this case we have chosen a
filtering technique based on the particular characteristics of
the noise present in the fringe pattern. Obviously a gaussian
smoothing technique will perform poorly in the presence of
“salt and pepper” or impulsive noise. due to its point spreading
nature. A more appropriate spatial filter for such an application
would be the non-linear median filter [12] a technique Ryoo
and Choi implemented in their analysis of noisy white-light
interferograms [10].

[I1. SIMULATION

To validate and also gauge the performance of the proposed
calibration technique we simulate the reconstruction of a
diffuse surface illuminated by a nonlincar aberrated / noise
affected fringe sequence. We model a reference sinusoidal with
a 20dB second order harmonic component corresponding to a
typical captured digitally projected sinusoidal distribution:

128 4 100 cos (27 fox + 27n/N)
+10cos(27(2fo)x + 4mn/N),
forn=0,1,2...N —1

rn(2,9)
)



(a) Reference Signal (b) Distorted Signal
£(rn(x))

(c) Noisy Signal 77, (z,y) (d)  Filtered Signal
7 (2, y)

Fig. 3. Simulated Signal Cross-sections for n = 0

Consequentially, we define our deformed phase modulated
fringe as

dp(z,y) = 128 + 100 cos(27 fozx + ¢(z,y) + 27n/N)
+10cos(27(2f0)x + 4mn/N + 2¢(z,y)), (5)
forn=0,1,2...N — 1

where ¢(z,y) represents a hemispherical convex shape as
seen in Figure 4(a). The camera / projector nonlinear intensity
response is modelled as:

128
tanh(3)

3s
¢(s) = 128M

+ 128, 6)
Subsequent to these processes the signals are corrupt with
additive gaussian noise yielding a common Signal to Noise
Ratio of 20dB. Thus, our distorted noise corrupt reference
fringe sequence 7, (z, y) and distorted noise corrupt deformed
phase modulated fringe sequence d,,(z,y) are given as

(@, y) = E(ra(@)) 4 np (@), ™

and

dn (2, y) = §(dn(2)) + i (2), ®)

respectively, where n7 (z) and nd(z) are the noise vectors
introduced into into the nth reference and phase modulated
signals respectively. Figure 3(a) - (c) displays a cross-section
of the the initial reference sinusoidal signal, the nonlinear
distorted signal and the noise corrupt signal respectively. The
distorted noise corrupt signals 7,(x,y) and d,(z,y) were
filtered using the gaussian smoothing technique described in
Subsection I.B to give

md () =Y e+ k= 1,9).G(k), ©)
k
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Input Fringe | € (rads™1) 0. (rads™1) |

Non-Calibrated 0.0992 0.0763
Calibrated 0.0965 0.0755
Calibrated-Filtered 0.0152 0.0118
TABLE 1
MEAN ABSOLUTE PHASE ERROR AND STANDARD DEVIATION, PMP
N=3

and

d? (2,9) == du(z + k —1,4).G(k), (10)
k

fore=1,2..M—m+1

where m is the width of the gaussian kernel G() and M is the
width of the fringe distribution in samples. Through trial and
error, m and o of the gaussian kernel was determined to be
35 and 13.5 respectively. Figure 3(d) displays a cross-section
of the filtered noise corrupt signal.

Since the fringe non-linear anomalies are independent of y
we trained a single neural network as described in Subsection
II.A employing a single hidden layer of 5 neurons utilising
a tansigmoidal activation function f and a pure linear output
stage. Each set of n signals, 7,(z,y), dn(x,y) and the fil-
tered versions 75,/ (z, ), dn” (, ) for both the reference and
deformed signals were applied to the trained neural network
to yield the calibrated fringe patterns r,(z,y), d,(z,y) and
rAnf (I> y) dnf($> y)

A standard 3 step PMP technique (N = 3) was used to
extract the phase distribution ¢(z, y) for the filtered calibrated,
the non-filtered calibrated and also the non-calibrated fringe
sequences. Table 1 displays the mean absolute phase recon-
struction error €. along with corresponding standard deviation
o. for both the calibrated and non-calibrated situations. For
the calibrated-filtered case the absolute mean measurement
error has been improved from 0.0992 rads—' to 0.0152
rads~! improving the accuracy by more than 84%. Clearly
the performance of the neural network is significantly hindered
with the introduction of noise with only a less than 3%
improvement on accuracy under the specified noise conditions
without filtering. Figure 4 displays the complete reconstruction
of the simulated hemispherical diffuse surface for filtered
calibrated, non-filtered calibrated and non-calibrated fringe
sequences. It is clearly evident visually the improvement in
reconstruction for filtered calibrated case in contrast to the
non-filtered calibrated and non-calibrated cases. We will now
consider the experimental application of the proposed neural
network technique.

IV. EXPERIMENTATION

In order to verify the physical application of the noise re-
moval and calibration technique, practical experimental results
were established through the profiling of a diffuse object.
A sinusoidal fringe pattern was projected using an InFocus
LP530 digital video projector and captured using a MS3100



(a) Simulated Phase Distribu- (b)
tion ¢(x, y) Reconstruction

Non-calibrated

(d) Filtered Calibrated Re-
construction

(c) Calibrated Non-filtered
Reconstruction

Fig. 4. Simulated Reconstructed Phase Distributions

{(b) Non-calibrated Reconstruc-
tion

(a) Experimental surface

(¢) Non-filtered Calibrated (d) Filtered Calibrated

Fig. 5. Experimental object and fringe patterns

3-CCD camera. The resolution of the CCD camera is 1392
x 1039 pixels with a field of vision 260 x 194mm?. This
corresponds to a captured fringe pattern with a spatial resolu-
tion of 0.1868mm/pixel. vielding a spatial period of 25.7mm
equating to a spatial frequency fo of 38.9 fringes/m. System
parameters [y and dy were measured to be 2m and 0.81m
respectively. The profiled surface was a convex dome shape as
seen in Figure 5(a). The distorted fringe image was calibrated
and filtered using the neural network approach describe in
Section III. with the guassian kernel parameters m and o
determined as 40 and 13.5 respectively. The maximum height
of the hemispherical surface is 22.8mm with a diameter of
99mm with the thickness of the base material being 16mm.
Figures 5(b)-(d) display the reconstructed surfaces for non-
filtered / non-calibrated, non-filtered / calibrated and filtered /
calibrated cases. The performance of the calibration technique

(a) Calibrated Non-filtered Re-
construction

{b) Filtered Calibrated Recon-
struction

Fig. 6. Cross-section of reconstructed diffuse surface seen in Figure 5(a)

is clearly evident with the filtered and calibrated providing the
most accurate reconstruction of the diffuse surface. Figures
6(a) and (b) further emphasize the improvement displaying a
cross-section of the reconstructed dome surface. The dashed
line indicating the non-filtered / non-calibrated case and the
solid lines indicating the non-filtered and filtered for Figures
6(a) and (b) respectively.

V. CONCLUSION

In this paper we have proposed a neural network signal map-
ping calibration technique. aimed at reducing noise and non-
linear aberrations present in captured structured light patterns.
We have verified the application through simulation and also
empirically, and have shown significantly improved surface
profile reconstruction results. The method only requires a
single image for calibration and thus is suitable for dynamic
applications where haste calibration is required.
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