70 research outputs found

    CARACTERISATION FONCTIONNELLE DU SITE ACTIF DE L'AMINOPEPTIDASE A PAR MUTAGENESE DIRIGEE. MISE EN EVIDENCE DE NOUVEAUX MOTIFS CONSENSUS DES AMINOPEPTIDASES MONOZINCS

    No full text
    PARIS-BIUSJ-ThĂšses (751052125) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Etudes structure-fonction du récepteur de l'apéline par modélisation moléculaire et mutagenÚse dirigée (recherche d'agonistes et/ou d'antagonistes de ce récepteur)

    No full text
    L'apĂ©line est le ligand naturel du rĂ©cepteur orphelin humain APJ, un rĂ©cepteur Ă  sept domaines transmembranaires, couplĂ© aux protĂ©ines G (RCPG). L apĂ©line et son rĂ©cepteur jouent un rĂŽle important dans le maintien de l Ă©quilibre hydrique et dans la rĂ©gulation des fonctions cardiovasculaires et mĂ©taboliques. Afin de dĂ©velopper des agonistes ou des antagonistes de ce rĂ©cepteur, inexistants lorsque j ai commencĂ© mes travaux de thĂšse, il est important d avoir des informations sur l organisation structurale et fonctionnelle du rĂ©cepteur ainsi que de son ligand, afin de comprendre comment l apĂ©line interagit avec celui-ci et comment elle l active. Pour cela, nous avons construit en collaboration avec le Dr B. Maigret, le premier modĂšle tridimensionnel (3D) du rĂ©cepteur de l'apĂ©line complexĂ© avec pE13F et K17F, par homologie avec le modĂšle validĂ© du rĂ©cepteur de la cholĂ©cystokinine de type 1. Le modĂšle obtenu a permis de visualiser plusieurs interactions entre l apĂ©line et son rĂ©cepteur. Parmi celles-ci, deux arginines de l apĂ©line interagissent en surface du rĂ©cepteur avec des rĂ©sidus acides. La phĂ©nylalanine C-terminale de l'apĂ©line, nĂ©cessaire Ă  l internalisation du rĂ©cepteur de l'apĂ©line et Ă  l effet hypotenseur de l apĂ©line, s insĂšre dans une poche aromatique composĂ©e des rĂ©sidus aromatiques Trp 152 et Trp 259 et Phe 255, situĂ©e au fond du site de liaison du rĂ©cepteur. Nous avons vĂ©rifiĂ© ces interactions par des Ă©tudes structure-fonction par mutagenĂšse dirigĂ©e sur le rĂ©cepteur de l'apĂ©line. Nous avons ainsi montrĂ© que la Phe 255 et le Trp 259 interagissent avec la phĂ©nylalanine C-terminale de l apĂ©line et qu ils jouent un rĂŽle clĂ© dans l'internalisation du rĂ©cepteur de l'apĂ©line, sans jouer de rĂŽle dans la liaison de l apĂ©line Ă  son rĂ©cepteur, ni dans le couplage du rĂ©cepteur Ă  la protĂ©ine Gi. Cette Ă©tude reprĂ©sente une premiĂšre validation du modĂšle 3D du rĂ©cepteur de l apĂ©line. Nous nous sommes ensuite intĂ©ressĂ©s aux rĂ©sidus du rĂ©cepteur de l'apĂ©line impliquĂ©s dans la liaison de l apĂ©line Ă  son rĂ©cepteur. Suite Ă  la publication rĂ©cente des structures cristallographiques de RCPG, nous avons construit avec le Dr B. Maigret, deux nouveaux modĂšles 3D du rĂ©cepteur de l apĂ©line sur la base des structures cristallographiques des rĂ©cepteurs b2-adrĂ©nergique et CXCR4. Dans ces trois modĂšles, nous avons observĂ© une superposition parfaite de la poche aromatique dĂ©crite ci-dessus alors que de grandes diffĂ©rences sont apparues dans la nature des rĂ©sidus interagissant avec l'apĂ©line Ă  la surface du rĂ©cepteur. Par mutagenĂšse dirigĂ©e, nous avons montrĂ© que l Asp92, le Glu172 et l Asp282 sont des rĂ©sidus essentiels Ă  la liaison de l apĂ©line Ă  son rĂ©cepteur. Ceci nous a permis d'apporter une seconde validation du modĂšle 3D du rĂ©cepteur de l'apĂ©line et de sĂ©lectionner celui fondĂ© sur la structure du CXCR4. Ce modĂšle pourra ĂȘtre utilisĂ© pour rĂ©aliser des campagnes de criblage in silico de chimiothĂšques virtuelles ainsi que pour dĂ©velopper un pharmacophore d agoniste ou d antagoniste du rĂ©cepteur de l apĂ©line.Apelin is the endogenous ligand of the receptor APJ, a seven-transmembrane domain receptor coupled to G-protein. Apelin and its receptor play an important role in the regulation of body fluid homeostasis and cardiovascular functions. In order to design agonists or antagonists for the apelin receptor, nonexistent at the beginning of my thesis, it was important to define the structural elements in apelin and its receptor, required for apelin binding and subsequent receptor activation. To this end, we built, in collaboration with Dr. B. Maigret, the first three-dimensional (3D) model of the human apelin receptor complexed with pE13F or K17F, using a validated model of the cholecystokinin receptor-1 as a template. This model has shown different interactions between the apelin and its receptor. Among them, two arginines of the peptide interact with acidic residues at the top of the receptor. In addition, the C-terminal Phe of apelin, crucial for the internalization of the receptor and for the hypotensive effect of the apelin, is embedded in a hydrophobic pocket constituted by Trp 152, Phe 255 and Trp 259 and located at the bottom of the receptor. The reality of these interactions was evaluated by structure-function studies by site-directed mutagenesis on the apelin receptor. We then demonstrated that Phe 255 and Trp 259, by interacting with the C-terminal Phe of the peptide, are crucial for apelin receptor internalization without playing a role in apelin binding nor in the Gai coupling. This study represents the first validation of the apelin receptor 3D model. In order to pursue this validation, we focused our interest on the receptor surface to identify the residues involved in the apelin binding. For this purpose, two additional 3D models based on the b2-adrenergic and CXCR4 crystallographic structures recently published were built. The comparison of the three models showed a perfect superimposition of the hydrophobic pocket whereas the organization and the nature of the acidic residues implicated in the apelin binding are very different. In order to validate definitively one of these 3D models, we evaluated the role of these residues in the apelin binding by site-directed-mutagenesis. This study resulted in the identification of three key residues: Asp 92, Glu172 and Asp 282. These results validated the 3D model based on the CXCR4 crystallographic structure. This validated model will be used to perform in silico screening of virtual chemical libraries and may lead to the identification of agonists or antagonists of the apelin receptor.PARIS-BIUP (751062107) / SudocSudocFranceF

    Contribution of Molecular Modeling and Site-directed Mutagenesis to the Identification of Two Structural Residues, Arg-220 and Asp-227, in Aminopeptidase A

    No full text
    International audienceAminopeptidase A is a zinc metalloenzyme involved in the formation of brain angiotensin III, which exerts a tonic stimulatory action on the central control of blood pressure. Thus, central inhibitors of aminopeptidase A constitute putative central antihypertensive agents. Mutagenic studies have been performed to investigate organization of the aminopeptidase A active site, with a view to designing such inhibitors. The structure of one monozinc aminopeptidase (leukotriene A(4) hydrolase) was recently resolved and used to construct a three-dimensional model of the aminopeptidase A ectodomain. This new model, highly consistent with the results of mutagenic studies, showed a critical structural interaction between two conserved residues, Arg-220 and Asp-227. Mutagenic replacement of either of these two residues disrupted maturation and subcellular localization and abolished the enzymatic activity of aminopeptidase A, confirming the critical structural role of these residues. In this study, we generated the first three-dimensional model of a strict aminopeptidase, aminopeptidase A. This model constitutes a new tool to probe further the active site of aminopeptidase A and to design new inhibitors of this enzyme

    Multiple Cross Talk between Angiotensin II, Bradykinin, and Insulin Signaling in the Cortical Thick Ascending Limb of Rat Kidney

    No full text
    International audienceCortical thick ascending limb (CTAL) naturally expresses the angiotensin II (AngII) receptor type 1A (AT1 -R), the bradykinin (BK) receptor type 2 (B2 -R), and the insulin receptor. This segment is made of a single morphologically distinct cell type. AngII and BK are involved in same transduction pathways but differ markedly in their physiological actions on Na transport. Besides, the insulin signaling intersects with those of AngII and BK at multiple levels and especially by stimulation on Na reabsorption. Thus, the CTAL is a biologically suitable model to study the cross talk between G protein-coupled receptors or G protein-coupled receptors and receptor tyrosine kinase. In this work, the cross talks between AngII, BK, and insulin signaling are studied in rat CTAL by measuring changes in [Ca2]i . We show that BK exerts negative modulatory effects on AngII-induced [Ca2]i responses dependent on tyrosine kinase and MAPK pathways. Moreover, in the presence of BK, AngII-induced Na transport is suppressed. These effects suggest an interaction between AT1 -R and B 2 -R. We show a positive interaction between the insulin receptor and the AT1 -R through a protein kinase A-dependent mechanism that involves MAPK cascade, leading to the stimulation of the Ca2 influx induced by AngII. The presence of such interactions brings additional arguments for a complex and fine regulation of CTAL functions and puts forward the potentially beneficial effect of BK across this segment, in case of hyperinsulinemia or insulin resistance, by its negative feedback on AngII actions

    Study of Asparagine 353 in Aminopeptidase A: Characterization of a Novel Motif (GXMEN) Implicated in Exopeptidase Specificity of Monozinc Aminopeptidases

    No full text
    International audienceAminopeptidase A (EC 3.4.11.7, APA) is a 160 kDa membrane-bound zinc enzyme that contains the HEXXH consensus sequence found in members of the zinc metalloprotease family, the zincins. In addition, the monozinc aminopeptidases are characterized by another conserved motif, GXMEN, the glutamate residue of which has been shown to be implicated in the exopeptidase specificity of aminopeptidase A [Vazeux G. (1998) Biochem. J. 334, 407-413]. In carboxypeptidase A (EC 3.4.17.1, CPA), the exopeptidase specificity is conferred by an arginine residue (Arg-145) and an asparagine residue (Asn-144). Thus, we hypothesized that Asn-353 of the GXMEN motif in APA plays a similar role to Asn-144 in CPA and contributes to the exopeptidase specificity of APA. We investigated the functional role of Asn-353 in APA by substituting this residue with a glutamine (Gln-353), an alanine (Ala-353) or an aspartate (Asp-353) residue by site-directed mutagenesis. Expression of wild-type and mutated APAs revealed that Gln-353 and Ala-353 are similarly routed and glycosylated to the wild-type APA, whereas Asp-353 is trapped intracellularly and partially glycosylated. Kinetic studies, using alpha-L-glutamyl-beta-naphthylamide (GluNA) as a substrate showed that the K(m) values of the mutants Gln-353 and Ala-353 were increased 11- and 8-fold, respectively, whereas the k(cat) values were decreased (2-fold) resulting in a 24- and 14-fold reduction in cleavage efficiency. When alpha-L-aspartyl-beta-naphthylamide or angiotensin II were used as substrates, the mutations had a greater effect on k(cat), leading to a similar decrease in cleavage efficiencies as that observed with GluNA. We then measured the inhibitory potencies of several classes of inhibitors, glutamate thiol, glutamine thiol and two isomers (L- or D-) of glutamate phosphonate to explore the functional role of Asn-353. The data indicate that Asn-353 is critical for the integrity and catalytic activity of APA. This residue is involved in substrate binding via interactions with the free N-terminal part and with the P1 carboxylate side chain of the substrate. In conclusion, Asn-353 of the GXMEN motif, together with Glu-352, contributes to the exopeptidase specificity of APA and plays an equivalent role to Asn-144 in CPA
    • 

    corecore