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Beta 1-integrin–c-Met cooperation reveals an
inside-in survival signalling on autophagy-related
endomembranes
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& Stéphanie Kermorgant1

Receptor tyrosine kinases (RTKs) and integrins cooperate to stimulate cell migration and

tumour metastasis. Here we report that an integrin influences signalling of an RTK, c-Met,

from inside the cell, to promote anchorage-independent cell survival. Thus, c-Met and

b1-integrin co-internalize and become progressively recruited on LC3B-positive ‘autophagy-

related endomembranes’ (ARE). In cells growing in suspension, b1-integrin promotes

sustained c-Met-dependent ERK1/2 phosphorylation on ARE. This signalling is dependent on

ATG5 and Beclin1 but not on ATG13, suggesting ARE belong to a non-canonical autophagy

pathway. This b1-integrin-dependent c-Met-sustained signalling on ARE supports anchorage-

independent cell survival and growth, tumorigenesis, invasion and lung colonization in vivo.

RTK–integrin cooperation has been assumed to occur at the plasma membrane requiring

integrin ‘inside-out’ or ‘outside-in’ signalling. Our results report a novel mode of integrin–RTK

cooperation, which we term ‘inside-in signalling’. Targeting integrin signalling in addition to

adhesion may have relevance for cancer therapy.
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c
-Met, overexpressed or mutated in cancer, represents a
major therapeutic target1,2. Binding to its ligand (hepatocyte
growth factor (HGF)), triggers cell proliferation, survival

and migration1,2. c-Met signalling post-internalization3–5 is
required for cell migration, tumour growth and metastasis3,6.
Thus, c-Met mutations in the kinase domain are oncogenic not
only because they activate c-Met, but also because they promote
signalling from endosomes6. However, mechanisms regulating
c-Met/RTK (receptor tyrosine kinase) signalling post-endocytosis,
are poorly understood.

Integrins, extracellular matrix transmembrane receptors, also
control tumour cell migration/invasion proliferation and survi-
val7–9 via bi-directional signalling. Ligand binding in the
extracellular matrix (ECM), induces integrin ‘outside-in
signalling’; involving receptor clustering and activation, evoking
intracellular signalling and cellular responses. In contrast, signals
from other receptors, including RTKs, can trigger ‘inside-out-
signalling’, where intracellular proteins interacting with the
cytoplasmic face of integrins alter their activity, increasing
affinity towards the matrix7,10. Integrin trafficking, involving
constant plasma membrane-endosomes shuttling facilitating the
dynamic regulation of cell adhesion, plays a vital role in
regulating cell migration10–13.

Integrin–RTK cooperation plays a major role in cellular
outcome7. However, mechanisms, especially how the cooperation
is spatially orchestrated, are poorly defined. Integrins can bind
RTKs directly, promoting their activation14–16 or internalization17.
Conversely, RTKs can increase integrin expression18,19,
activation20 and recycling21. However, there is no evidence that
integrins and RTKs can cooperate on endomembranes.

Here we show, in several models including breast and lung
cancer cells, that b1-integrin positively regulates the endocytosis
of activated c-Met as well as c-Met signalling post-endocytosis,
unexpectedly from autophagy-related endomembranes (‘ARE’),
likely part of a non-canonical autophagy pathway. This
b1-integrin cooperation, occurs in cells grown in suspension
and leads to increased anchorage-independent cell survival/
growth. We report a novel mode of integrin–RTK cooperation,
which we term ‘inside-in signalling’.

Results
c-Met and b1-integrin co-internalize in a molecular complex.
b1-Integrin is the b-subunit of most ECM binding integrins,
including a5b1 the major fibronectin receptor7–9. To investigate
whether the c-Met pathway influences the trafficking of
b1-integrin, Flow cytometry, biotin internalization assays and
confocal imaging were used in the following cell models: ‘b1A
cells’ corresponding to b1-integrin null GD25 cells22

re-expressing b1-integrin23; NIH3T3 cells expressing c-Met
mutant M1268T, the oncogenicity of which results from
constitutive activation and endocytosis/trafficking6; and the
human epithelial, breast MDA-MB-468 and non-small cell lung
carcinoma A549 cell lines24,25. Either c-Met activation upon HGF
stimulation or constitutive activation triggered internalization of
a pool of surface b1-integrin (Fig. 1a,b,d,e, Supplementary
Fig. 1a–d). Interestingly, colocalization between internalized
c-Met/fluorescently labelled HGF (HGF-AlexaFluor-555)4 and
b1-integrin was observed (Fig. 1d,e; Supplementary Fig. 1d;
Supplementary Data 1). Moreover, live confocal imaging, using
an anti-b1-integrin antibody conjugated to AlexaFluor-488 or
integrin-a5-GFP, together with HGF-AlexaFluor-555,
demonstrated that the two molecules co-internalize and
co-traffic (Supplementary Movies 1 and 2).

We then analysed ‘c-Met-GFP cells’, which are HEK-293 cells
with tetracycline-inducible expression (‘TET on’) of constitutively

phosphorylated c-Met-GFP26 (Supplementary Fig. 1e) which
induces cell detachment, leading to floating, viable colonies
(Supplementary Fig. 1f; Supplementary Movies 3 and 4) that
retain c-Met-GFP kinase activity. This induced cell detachment
coincided with b1-integrin internalization (Fig. 1c); while total
cellular b1-integrin levels remained unaltered (Supplementary
Fig. 1e). Immunofluorescence (on cells seeded on poly-L-lysine-
coated coverslips) showed that c-Met and b1-integrin colocalized
in intracellular vesicles (Fig. 1f) while live imaging demonstrated
a constitutive trafficking of c-Met-GFP (Supplementary Movies 5).
c-Met and b1-integrin also co-internalize in A549 and MDA-MB-
468 cells maintained in suspension, detected post-HGF treatment
for 120 min (Fig. 1g,h).

c-Met and b1-integrin association in a complex was detected
by co-immunoprecipitation and proximity ligation assay (PLA) in
adherent and detached cells, both without and with HGF
stimulation (Fig. 1i,j, Supplementary Fig. 1g,h). b1-Integrin
co-immunoprecipitated with c-Met from intracellular fractions,
obtained with a ‘biotin surface removal assay’ (see Methods
section) (Fig. 1k), confirming an intracellular association of the
two molecules in a complex.

Thus, under both adherent and detached conditions, a
proportion of c-Met and b1-integrin associate: (i) in a molecular
complex at the plasma membrane under basal conditions; (ii) on
endomembrane, following c-Met–b1-integrin co-internalization,
upon c-Met activation.

b1-Integrin promotes c-Met-sustained ERK1/2 signalling.
Previous studies showed that c-Met needs to internalize to
signal3,4,6,24,27. Therefore we wondered whether b1-integrin can
affect c-Met signalling. Strikingly, in all cell models, the absence
of b1-integrin significantly impaired sustained c-Met-dependent
ERK1/2 phosphorylation while c-Met expression and
phosphorylation levels were unchanged. This occurred in
GD25, compared to b1A cells, stimulated with HGF for up to
120 min (Fig. 2a; Supplementary Fig. 2a,b), and in cells knocked
down for b1-integrin including M1268T cells (Fig. 2b;
Supplementary Fig. 2c–f), c-Met-GFP in suspension 16 h post-
tetracycline (Fig. 2c, Supplementary Fig. 2g–i), A549 (Fig. 2d;
Supplementary Fig. 2j) and MDA-MB-468 (Supplementary
Fig. 2j,k), cultured in suspension for 120 min with HGF. Thus,
b1-integrin influences downstream signalling of c-Met in a
manner independent of cell adhesion.

b1-Integrin promotes c-Met-driven in vivo tumorigenesis. The
functional importance of b1-integrin in c-Met signalling was
assessed in in vivo tumour growth and experimental metastasis.
NIH3T3 cells expressing the c-Met oncogenic mutant M1268T
rapidly formed tumours (sensitive to c-Met inhibition) in nude
mice6. Tumour volumes and weight were reduced significantly
(50–60% and 2.5-fold respectively; t-test Po0.001 to 0.05) in
b1-integrin versus control small interfering RNA (siRNA)-
transfected cells (Fig. 2e; Supplementary Fig. 2l); while no
difference occurred in wild-type (WT) cells (Supplementary
Fig. 2m).

In a lung colonization assay, we have previously shown that
only NIH3T3 cells expressing the c-Met oncogenic mutant
M1268T but not c-Met WT colonized the lung6. At 21 days, mice
injected with control siRNA-transfected M1268T cells presented
an average of 8.5 macroscopic pulmonary tumours compared
with 2.8 in mice injected with b1-integrin knocked down cells
(t-test, Po0.05) (Fig. 2f). Most lung tissue was invaded by control
siRNA-transfected cells; lung tissue of mice injected with
b1-integrin siRNA-transfected cells lacked cell invasion
(Supplementary Fig. 2n).
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In a 24 h in vivo invasion assay in zebrafish embryos, M1268T
cells were more invasive than WT cells, with the invasion of
M1268T cells inhibited by the c-Met inhibitor PHA-665752
(Supplementary Fig. 2o). b1-Integrin siRNA knockdown sig-
nificantly reduced invasion of mutant, but not WT cells (Fig. 2g).

Thus, b1-integrin is required for oncogenic c-Met-dependent
in vivo tumour growth and invasion. Our results further suggest

that b1-integrin is required for c-Met-dependent experimental
lung colonization.

b1-Integrin role in c-Met signalling is adhesion independent.
b1A and A549 cells were harvested and plated on laminin,
fibronectin or poly-L-lysine, for different periods þ /� HGF.
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HGF activated ERK1/2 comparably under each condition
(Supplementary Fig. 3a,b), suggesting that b1-c-Met-dependent
ERK1/2 activation was unrelated to substrate engagement. The
b1-integrin function blocking antibody, AIIB2, impaired cell
adhesion (Supplementary Fig. 3c), but had no influence on HGF-
stimulated ERK1/2 activation in A549 cells in suspension
(Supplementary Fig. 3d).

However, c-Met was found to colocalize on endomembrane
with b1-integrin in a primed conformation for ligand binding
(detected with 9EG7 antibody) termed here ‘active conformation’
as shown in A549 cells (Fig. 3a; Supplementary Data 1). In c-Met-
GFP cells treated with tetracycline for 16 h (cells totally detached),
a stronger reduction (almost 60% Po0.001) in cell surface levels
of active conformation b1-integrin versus pan-b1-integrin (18%
Po0.01) was detected (Supplementary Fig. 3e,f). Reduction of
active conformation b1 relative to pan b1 at the cell surface was
45% (Po0.01) (Fig. 3b). This was partially restored upon
pharmacological c-Met inhibition with SU11274 for 15 min
(t-test, Po0.05) Fig. 3b). The analysis of localization of active
conformation b1-integrin in 293-HEK non-transfected and
transfected with c-Met-GFP (‘c-Met-GFP cells’) seeded together,
followed by 16 h tetracycline treatment, gave similar results. In
non-transfected cells, b1-integrin was distributed at the plasma
membrane and in intracellular pools. In c-Met-GFP cells,
b1-integrin staining was increased in intracellular pools
(Fig. 3c). Treatment with c-Met inhibitor SU11274 restored
active conformation b1-integrin localization at the plasma
membrane (Fig. 3b,d). Thus c-Met-dependent internalized
b1-integrin pool is enriched in its active conformation. This
process is dependent on c-Met activity and is highly dynamic.
This is consistent with the finding that active conformation
integrins are endocytosed more efficiently, being found on
endosomes to a greater extent than pan integrins28.

The above suggested that the active b1-integrin conformer
plays a role in c-Met signalling. WT or cpdm MEFs, which are
null for SHARPIN (endogenous inhibitor of b1-integrin activ-
ity)29, were stimulated with HGF for up to 120 min, whilst in
suspension. Although ERK1/2 phosphorylation was transient in
WT cells, the signal was sustained in cpdm cells (Fig. 3e).
Intracellular colocalization between active conformation
b1-integrin and c-Met was observed at 120 min of HGF
stimulation in cpdm MEFs (Supplementary Fig. 3g). PI3K
inhibition, using LY294002, did not increase P-ERK1/2 in the

WT MEFs at 120 min HGF stimulation, excluding the role of
SHARPIN as a negative regulator of PTEN30, in sustaining c-Met
signalling in cpdm cells (Supplementary Fig. 3i). Increasing
b1-integrin activity through incubating the WT cells with 1 mM
MnCl2 increased basal ERK1/2 activation as expected. However, a
significant fold increase in ERK1/2 phosphorylation occurred
upon HGF stimulation for 120 min to the same level as that
observed in cpdm cells (t-test, Po0.05, Fig. 3e and Supplementary
Fig. 3h). Thus, b1-integrin in its active conformation plays a role
in b1-integrin–c-Met cooperation. Moreover, c-Met activation
increased intracellular b1-integrin activation levels in cells in
suspension (see A549 cells treated with HGF for 120 min)
(Supplementary Fig. 3j).

Thus, in detached cells, the input of b1-integrin in c-Met
signalling is b1-integrin ligand-independent. However, activated
c-Met increases the level of endomembrane-associated active
conformation b1-integrin, which in turns positively regulates
c-Met signalling.

c-Met and b1-integrin cooperation is endocytosis dependent.
Our results suggested that the cooperation for signalling occurs
inside the cells. Thus, we analysed the influence of impairing the
endocytic machinery on c-Met-dependent ERK1/2 phosphoryla-
tion. Dynasore, the small GTPase dynamin inhibitor or siRNA
clathrin heavy chain (CHC), reduced c-Met endocytosis
(Supplementary Fig. 4a,b) and c-Met-dependent ERK1/2 phos-
phorylation (Fig. 4a–c). These results indicated that c-Met signals
from intracellular compartments. Under these conditions,
b1-integrin internalization also was reduced (Supplementary
Fig. 4c), further suggesting that c-Met and b1-integrin co-inter-
nalization is required for c-Met signalling to ERK1/2.

The cytoplasmic domain of b1-integrin contains two conserved
NXXY motifs implicated in matrix-stimulated b1-integrin
internalization31. In cells expressing the b1-integrin double
mutant, Y783F/Y795F, in NXXY motifs (‘b1A-YYFF cells’),
b1-integrin internalization was reduced dramatically after HGF
stimulation, compared with WT b1-integrin in b1A cells
(Fig. 4d). In b1A-YYFF cells, c-Met-dependent ERK1/2
activation was impaired as in GD25 cells, with no sustained
signal at 120 min (Fig. 4e), while c-Met phosphorylation was
unchanged (Supplementary Fig. 4d). The reduction in HGF-
dependent ERK1/2 phosphorylation was not the result of a

Figure 1 | c-Met and b1-integrin co-internalize in a molecular complex in both adherent cells and those in suspension (a) Mean percentage cell surface

b1-integrin levels±s.e.m. in b1A cells stimulated with HGF for the indicated times, assessed by flow cytometry (fluorescence intensity, arbitrary units,

n¼ 3). (b) Western blot for b1-integrin following a biotinylation internalization assay in M1268T c-Met-expressing NIH3T3 cells transfected with control, or

c-Met siRNA. Cells were incubated for 15 min at 37 �C. Numbers are mean percentages of internalization ±s.e.m. (n¼ 5). (c) The mean percentage of

internalized b1-integrin within 30 min (obtained with a biotinylation internalization assay) in c-Met-GFP cells treated with tetracycline (Tet) for the times

indicated and compared with total cell surface b1-integrin±s.e.m. (arbitrary units, n¼ 3). (d–h) Confocal sections of cells stained for DAPI (blue) (d,g,h),

c-Met or HGF-AlexaFluor-555 (HGF-555) (red) and b1-integrin (green) (d,e,g,h) or expressing c-Met-GFP (green) and stained for b1-integrin (red) (f).

Colocalizations appear in yellow. Scale bar, 10mm (d,e,g,h) and 20mm (f). Numbers are mean percentage colocalization±s.e.m. (n¼ 3). (d) b1A cells

stimulated with HGF-555 for 0 or 30 min. (e) M1268T c-Met-expressing NIH3T3 cells. (f) c-Met-GFP cells treated with tetracycline for 5 h. (g,h) Cells in

suspension stimulated with HGF for 120 min and cytospun. (g) A549. Orthogonal reconstructions of 10 serial confocal slices are shown (y–z and x–z axis

with 1: HGF-555, 2: b1-integrin, 3: merge of 1 and 2) alongside the one z-slice taken in the middle of the cells. The perpendicular yellow lines on the section

indicate from where the orthogonal views were built. (h) MDA-MB-468. (i) proximity ligation assay (PLA). Confocal sections of A549 cells � /þ HGF

(100 ng ml� 1) for 120 min, fixed and stained with c-Met and b1-integrin or equivalent isotyped IgG, followed by the binding of PLA probes. The red dots

indicate proximity between c-Met and b1-integrin. Numbers represent the mean fold change in PLA signal (c-Met-b1-integrin) per cell normalized on total

c-Met levels±s.e.m. (n¼ 2). Scale bars, 10mm. (j) Western blots for c-Met and b1-integrin following immunoprecipitation with c-Met B2 antibody, IgG

control or no antibody (beads only) in b1A cells. Cells were stimulated with HGF for 0 or 120 min. Total c-Met and b1-integrin levels in the cell lysates are

shown. Numbers±s.e.m. (n¼ 3) represent the levels of b1-integrin co-immunoprecipitated, normalized to c-Met immunoprecipitate, at 0 min (levels set as

1) and 120 min of HGF stimulation (levels expressed as a fold change from 0 min). Values, obtained by densitometric analysis, were first tresholded on IgG

values. (k) c-Met-b1-integrin co-immunoprecipitation. Following HGF stimulation of b1A cells for 0 or 120 min, cell surface proteins were biotinylated at 4 �C and

removed using streptavidin pull-down. Immunoprecipitation was performed with c-Met (B2) antibody or IgG control on the intracellular fractions. Western blots for

c-Met and b1-integrin post-immunoprecipitation from intracellular fractions and in the initial cell lysates are shown. t-Test, **Po0.01; ***Po0.001.
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Figure 2 | b1-integrin is required for sustained c-Met-dependent ERK1/2 phosphorylation in detached cells, c-Met-dependent in vivo tumorigenesis

and invasion. (a–d) Western blots for: (a) tubulin and phospho-ERK1/2 in b1A and GD25 (b1� /� ) cells, stimulated with HGF for 0, 15 and 120 min;

(b) Phospho-c-Met (Y1234-355), c-Met, phospho-ERK1/2, ERK 1/2 and tubulin in M1268T c-Met-expressing NIH3T3; (c) phospho-c-Met (Y1234-355),

GFP (c-Met-GFP: p195, precursor; p170, mature b chain), b1-integrin, phospho-ERK1/2 and tubulin in c-Met-GFP cells incubated with tetracycline (Tet) for

0 or 16 h; (d) b1-integrin, phospho-ERK1/2, and tubulin in A549 cells, stimulated without (� ) or with (þ ) HGF for 120 min in suspension; (b–d) All cells

were transfected with control (Cont) or b1-integrin (b1) (human cells: oligo 1, Qiagen; mouse cells: oligo 3, Dharmacon) siRNA. Graphs represent phospho-

ERK1/2/tubulin ratios (means±s.e.m.), normalized to appropriate controls: (a,d) no HGF; (b,c) siRNA control (Cont), obtained by densitometric analysis

(n¼ 3 to 6). (e) Tumour growth curves, over time, of M1268T c-Met-expressing NIH3T3 cells, transfected with control (Cont) or b1-integrin (b1) siRNA.

Data are mean tumour volume (mm3)±s.e.m. of n¼ 5 mice per group. (f) Pictures of the lungs of mice dissected 21 days after injection into the tail vein

with either control (Cont) (n¼4) or b1-integrin (b1) (n¼ 5) siRNA-transfected M1268T c-Met-expressing NIH3T3 cells. Graph represents the mean

number of macroscopic tumours per mouse±s.e.m. (g) Mean number±s.e.m. of disseminated WT and M1268T c-Met-expressing NIH3T3 cells per

zebrafish embryo 24 h after injection. Cells were transfected with control (Cont) or b1-integrin (b1) siRNA (n¼ 3, average of 25 embryos per condition per

experiment). t-Test, * Po0.05; **Po0.01; ***Po0.001.
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decrease in ERK1/2 expression levels in GD25/b1A-YYFF,
compared with b1A cells (Supplementary Fig. 4e). Thus, the
effects of b1-integrin on c-Met signalling depend on a trafficking-
competent b1-integrin with intact cytoplasmic NXXY motifs.

b1-Integrin is required for c-Met endocytosis. The HGF-
dependent rate of c-Met internalization also was reduced mark-
edly in b1A-YYFF versus b1A cells (Fig. 4f,g), suggesting that
b1-integrin internalization is required for optimal HGF-mediated
c-Met internalization. Accordingly c-Met internalization was
reduced in cells lacking b1-integrin, including GD25 compared
with b1A cells (Fig. 4g; Supplementary Fig. 4f), A549 and MDA-
MB-468 cells knocked down for b1-integrin and grown in

suspension (Fig. 4h; Supplementary Fig. 4g). Conversely, c-Met
internalization was increased significantly in cpdm cells (Fig. 4i).
Thus, active conformation b1-integrin not only co-internalizes
with activated c-Met but also is required for optimal c-Met
internalization.

Since endocytosis is required for optimal c-Met signalling, we
hypothesized that the role of b1-integrin in c-Met signalling is a
consequence of its role on c-Met endocytosis. We thus reasoned
that rescuing c-Met internalization in cells expressing a
b1-integrin form defective in internalization, such as b1A-YYFF,
would restore signalling. Rab21 promotes b1-integrin endocy-
tosis32. b1A-YYFF cells expressed lower levels of Rab21 compared
with b1A cells (Supplementary Fig. 4h). The expression of GFP-
Rab21 in b1A-YYFF cells restored HGF-AlexaFluor-555 uptake
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Figure 3 | The role of b1-integrin in c-Met-dependent signalling is adhesion independent though its active conformation is a positive regulator.

(a) Confocal section of A549 cells stimulated with HGF-AlexaFluor-555 (HGF-555, red) for 120 min in suspension. Cells were cytospun, fixed and stained

for active conformation b1-integrin (9EG7, green) and DAPI (blue). Colocalizations appear in yellow. Scale bar, 10 mm. Numbers are mean percentage

colocalization±s.e.m. (n¼ 3). (b) The mean percentage cell surface levels±s.e.m. of active conformation b1-integrin (9EG7) reported on pan-b1-integrin

(DF7) assessed by flow cytometry. c-Met-GFP cells were treated with or without tetracycline (Tet) for 16 h (arbitrary units, n¼4) and with or without

SU11274 (2 mM) (n¼ 3). (c,d) Confocal projections of 7 Z-sections from the base to the apex of cells. Arrows show examples of plasma membrane

staining. Scale bar, 10mm. Cells were cultured on Poly-L-lysine coated glass coverslips for 16 h with tetracycline and stained for active conformation

b1-integrin (9EG7, red). c-Met-GFP is in green. (c) T-REx-293 cells, non-transfected and stably transfected with c-Met-GFP (‘c-Met-GFP cells’), at a 50/50

ratio. (d) c-Met-GFP cells in the presence of the c-Met inhibitor SU11274 (2mM). (e) Western blots for phospho-ERK1/2, ERK1/2 and tubulin in WT and

cpdm (SHARPIN null) MEFs, stimulated without (� ) or with (þ ) HGF for 15 and 120 min in suspension and treated without (� ) or with (þ ) 1 mM MnCl2.

Graphs represent phospho-ERK1/2/ERK1/2 ratios±s.e.m. Normalized to no HGF obtained by densitometric analysis (n¼ 3). t-Test, *Po0.05.
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to levels observed in b1A cells (Fig. 4j, compared with Fig. 4g).
However HGF-dependent ERK1/2 activation was not rescued, as
assessed by flow cytometry analysis of GFP-positive cells (Fig. 4k,
Supplementary Fig. 4i), suggesting that b1-integrin, and its
cytoplasmic NXXY domain, is not only required for optimal

c-Met endocytosis but also has an additional role in c-Met
signalling post-internalization.

c-Met and b1-integrin continue to co-traffic post-internalization
with colocalizations detected at 120 min of HGF stimulation
(Fig. 1g,h) and b1-integrin mostly influences the sustained c-Met-
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dependent ERK1/2 activation (Fig. 2). Since endocytosed integrins
normally return to the plasma membrane within 15–30 min the
prolonged c-Met–integrin intracellular colocalizations suggested that
b1-integrin might play a ‘signalling’ function from an intracellular
compartment not previously associated with integrin traffic.

c-Met and b1-integrin co-traffic on LC3B-positive vesicles. We
investigated, initially using adherent cells, where c-Met and
b1-integrin co-traffic following HGF stimulation, through
monitoring colocalization with EEA1 (early endosome antigen 1),
Rab4-GFP (early recycling), Rab11-GFP (late recycling),
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Rab7-GFP (late endosome) and LC3B (ref. 33) (autophagosomes
and LC3B-associated phagocytosis).

Although some overlap with each marker was detected, at late
time points (especially 120 min) the greatest enrichment of
c-Met–b1-integrin occurred with LC3B in MDA-MB-468 and
A549 cells (Supplementary Fig. 5a–d). Triple colocalizations also
were observed in b1A cells at 120 min HGF stimulation (13.2%,
Supplementary Fig. 5e), M1268T cells (30.9%, Supplementary
Fig. 5f) and in cpdm cells at 120 min HGF stimulation
(Supplementary Fig. 5g). Thus, co-internalized c-Met and
b1-integrin appear to traffic progressively to LC3B-positive
compartments. Triple colocalization also occurred in cells in
suspension including A549 (25.7%, Fig. 5a, Supplementary Data 1)
and MDA-MB-468 (40.5%, Fig. 5d, Supplementary Data 1), at
120 min HGF stimulation, and in 16 h Tet-induced c-Met-GFP
cells (33%, Fig. 5c, Supplementary Data 1). b1-Integrin–c-Met
colocalizations with Beclin1, another marker of autophagosomes
and LC3B-associated phagocytosis, were also observed as shown
in A549 (21.5%, Fig. 5b, Supplementary Data 1) and MDA-MB-
468 (57.4%, Fig. 5e, Supplementary Data 1), in suspension with
HGF for 120 min.

c-Met and b1-integrin signal on ARE. To assess whether the
localization of c-Met and b1-integrin on LC3B/Beclin1 endo-
membranes is important for b1-integrin–c-Met signalling, the
formation of such endomembranes was reduced by knocking
down the autophagy regulator ATG5 (autophagy protein 5) using
siRNA, which decreased the levels of lipidated LC3B, LC3BII
(Supplementary Fig. 5h). This resulted in a significant reduction
of c-Met-dependent sustained ERK1/2 phosphorylation, to levels
seen in b1-integrin-depleted cells, as shown in A549 and MDA-
MB-468 cells in suspension stimulated with HGF for 120 min and
in c-Met-GFP cellsþ 16 h tetracycline (Fig. 5f,h, Supplementary
Fig. 5k). However c-Met phosphorylation (Supplementary
Fig. 5l), expression levels (Supplementary Fig. 5m) and c-Met
endocytosis (Supplementary Fig. 5n) were unaffected. In cpdm
cells (where ERK1/2 activation was increased at 120 min HGF
compared with WT cells, Fig. 3e), a decrease in ERK1/2 phos-
phorylation was detected at 120 min (Supplementary Fig. 5o).
These results were confirmed using Beclin1 siRNA (Fig. 5i).
Recently, a non-canonical autophagy pathway, called LAP for
‘LC3B-associated phagocytosis’ was described34–37. While ATG5
and Beclin1 are players involved in canonical and non-canonical
autophagy, ATG13 plays a role only in the canonical

autophagy34–37. Interestingly, ATG13 siRNA-mediated
knockdown had no effect on c-Met-dependent ERK1/2
signalling in c-Met-GFP cells, post-16 h tetracycline (Fig. 5i)
and A549 cells at 120 min of HGF stimulation in suspension
(Fig. 5g). We verified that knockdown of ATG13 or Beclin1
reduced the levels of lipidated LC3B, LC3BII (Supplementary
Fig. 5i,j). Furthermore, ATG13 knockout MEFs38 had no altered
c-Met-dependent sustained ERK1/2 signalling (Fig. 5j). These
results suggest that c-Met and b1-integrin co-traffic and signal on
endomembranes belonging to a non-canonical autophagy
pathway instead of on the autophagosome per se. We have
called this compartment ‘ARE’.

Cells were treated with the lysosomal inhibitor chloroquine,
interfering with both canonical and non-canonical autophagy
(witnessed by an increase in LC3BII levels)35. In this condition,
c-Met activation, ERK1/2 activation, c-Met and b1-integrin
expression levels on basal conditions and upon c-Met activation
were unchanged (Supplementary Fig. 6a–h). These results
indicated that c-Met signalling as well as c-Met and b1-integrin
stability are not influenced by canonical/non-canonical
autophagy flux. Additionally, c-Met activation (HGF dependent
or constitutive) (Supplementary Fig. 6a,d,e,g) or b1-integrin levels
(Supplementary Fig. 6i,j) did not affect basal autophagy as
assessed with LC3B western blots. Thus, c-Met and b1-integrin
appear not to influence autophagic flux in our experiments.

Autophagosomes, and related endomembranes, have been
considered to be degradative rather than signalling compart-
ments39,40. Our results suggest that the c-Met-b1-integrin
complex activates ERK1/2 on ‘ARE’; consistent with the report
that autophagy proteins regulate EGF-dependent ERK1/2
activation41. A pool of phosphorylated ERK1/2 was detected on
‘ARE’, together with c-Met, upon HGF/tetracycline treatment
(Fig. 5k–m, Supplementary Data 1). Moreover, P-ERK1/2-c-Met
colocalization on LC3B-positive endomembrane was reduced
upon b1-integrin knockdown or mutation (b1A-YYFF cells)
compared to controls (control siRNA in c-Met-GFP cells and
b1A cells) (Fig. 5l,m). These results further indicated that
b1-integrin impinges on c-Met signalling on ARE.

b1 may act as an adaptor to sustain c-Met signalling on ARE.
We hypothesized that, on the ARE, b1-integrin acts as a scaffold
between c-Met and Shc through the NXXY motif, previously
reported to modulate signalling of b3-integrin to Shc42. In all
cells, p52Shc phosphorylation, unlike p66Shc and p46Shc, was

Figure 5 | c-Met and b1-integrin co-traffic and signal on autophagy-related endomembranes. (a–e) Confocal sections. Scale bar, 10mm. Numbers are

percentages colocalization±s.e.m. (a,b) A549 cells at 120 min HGF stimulation in suspension, stained for c-Met (red), b1-integrin (green) and (a) LC3B

(blue) (n¼ 3) or (b) Beclin1 (n¼4). (c) c-Met-GFP (green) cells, plated on poly-L-lysine, incubated with tetracycline (Tet) for 16 h and stained for

b1-integrin (red) and LC3B (blue) (n¼ 3). (d,e) MDA-MB-468 cells at 120 min HGF stimulation in suspension, stained for c-Met (red), b1-integrin (green)

and (d) LC3B (blue) and DAPI (magenta) (n¼4) or (e) Beclin1 (blue) and DAPI (magenta) (n¼ 3). (f,g) Western blots for (f) b1-integrin, c-Met, ATG5,

tubulin and phospho-ERK1/2 or (g) c-Met, ATG13, tubulin and phospho-ERK1/2 in A549 cells stimulated without (� ) or with (þ ) HGF for 15 or 120 min in

suspension. Numbers represent mean phospho-ERK1/2/tubulin ratios±s.e.m. at 120 min with HGF normalized to no HGF, in cells transfected with: (f)

control or ATG5 (SMARTpool) siRNA (n¼ 3); (g) control or ATG13 siRNA (from two to four individual oligos used per experiment, pooled data from one or

multiple individual oligos per experiment, n¼ 5). Data were obtained by densitometric analysis. (h,i) Western blots for (h) b1-integrin, c-Met, ATG5, tubulin

and phospho-ERK1/2 or (i) c-Met, ATG13, Beclin1, tubulin and phospho-ERK1/2 in c-Met-GFP cells stimulated without (� ) or with (þ ) tetracycline (Tet)

for 16 h. Numbers represent mean phospho-ERK1/2/tubulin ratios±s.e.m. normalized to control knocked down cellsþTet in (h) ATG5 (SMARTpool)

knocked down c-Met-GFP cells (n¼ 3) or (i) ATG13 or Beclin1 knocked down (two individual oligos of each) c-Met-GFP cellsþTet (n¼ 3). Data were

obtained by densitometric analysis. (j) Western blot for c-Met, ATG13, tubulin and phospho-ERK1/2 in ATG13 knockout MEFs re-expressing (WT) or not

(� /� ) WT ATG13 stimulated without (� ) or with (þ ) HGF for 120 min in suspension. Numbers represent mean phospho-ERK1/2/tubulin

ratios±s.e.m. at 120 min with HGF normalized to no HGF (n¼ 3). Data were obtained by densitometric analysis. (k) Confocal sections of c-Met-GFP

(green) cells with tetracycline (Tet) for 0 and 16 h. Cells were stained for phospho-ERK1/2 (red), LC3B (blue) and DAPI (purple). Scale bar, 10mm. Numbers

are percentages colocalization±s.e.m. between c-Met-LC3B and P-ERK1/2 (n¼ 3). (l,m) Percentage of the colocalization of P-ERK1/2 with c-Met-LC3B in

(l) c-Met-GFP cells upon Tet transfected with b1-integrin (b1) siRNA and (m) b1A-YYFF cells upon HGF for 120 min, compared with the colocalization in

their respective control, set as 100%. Controls are siRNA controlþTet (l) (Cont) and b1A cellsþHGF 120 min (m). Data are mean±s.e.m. (n¼ 3). t-Test,

*Po0.05; **Po0.01; ***Po0.001.
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activated constantly upon HGF stimulation (Fig. 6a,b,
Supplementary Fig. 7a,b). The absence (GD25 cells or
b1-integrin knocked down A549 and c-Met-GFP cells) or
mutation (b1A-YYFF cells) of b1-integrin significantly impaired
c-Met-dependent sustained p52Shc phosphorylation (at 120 min
of HGF stimulation or after 16 h of tetracycline treatment),
compared with control (b1A or control knocked down A549 and

c-Met-GFP cells) (Fig. 6a,b, Supplementary Fig. 7a,b). HGF
significantly stimulated p52Shc phosphorylation at 120 min in
cpdm cells while the signal was not sustained in WT cells (Fig. 6c,
Supplementary Fig. 7c). The depletion of p52Shc using siRNA,
reduced c-Met-dependent sustained ERK1/2 phosphorylation
(shown at 120 min of HGF stimulation) in A549 and MDA-
MB-468 (Supplementary Fig. 7d).
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upon 120 min HGF stimulation normalized to 0 min, in GD25, b1A and b1A-YYFF cells. Data were obtained by densitometric analysis of western blots

(shown in Supplementary Fig. S7a) (n¼ 3 GD25 cells, n¼4 b1A and b1A-YYFF cells). (b) Western blots for phospho-p52Shc, tubulin and b1-integrin in

A549 cells, transfected with control (Cont) or b1-integrin (b1) siRNA and stimulated without (� ) or with (þ ) HGF for 120 min in suspension. Numbers
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Figure 7 | c-Met–b1-integrin cooperation on ARE mediates c-Met-dependent anchorage-independent cell survival. (a) Confocal section of A549 cells
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anchorage-independent survival (or protection against anoikis)±s.e.m. in cells transfected with b1-integrin (b1)(Qiagen), ATG5 (SMARTpool) or ATG13 (from one

to four individual oligos used per experiment, pooled data from one or multiple individual oligos per experiment) siRNA, normalized to control (Cont) siRNA. A549

cells were stimulated with HGF for 48 h in suspension. c-Met-GFP cells were stimulated with tetracycline (Tet) for 24 h in suspension. The HGF- or Tet-dependent

anchorage-independent survival was obtained by normalizing the data with HGF/Tet to no HGF/Tet. Cells were stained with propidium iodide and the cell viability

was analysed by flow cytometry (A549: b1-integrin siRNA n¼6, ATG5 or ATG13 siRNA n¼ 3. c-Met-GFP: b1-integrin or ATG5 siRNA n¼ 3, ATG13 siRNA n¼4).

(c) Western blots for phospho-ERK1/2, ERK1/2, phospho-p52Shc, tubulin and ATG5 in A549 cells, transfected with control or ATG5 siRNA and stimulated without

(–) or with (þ ) HGF for 48 h in suspension. Graph represents mean ratios±s.e.m. of phospho-ERK1/2/tubulin (siRNA b1-integrin: n¼ 5, siRNA ATG5: n¼ 3) and

of phospho-p52Shc/tubulin (siRNA b1-integrin: n¼ 3; siRNA ATG5: n¼4) with HGF normalized to the mean ratios with no HGF, obtained by densitometric analysis.

(d,e) Western blots for (d) phospho-ERK1/2 and tubulin or (e) phospho-ERK1/2, tubulin and ATG13 in (d) A549 cells stimulated without (� ) or with (þ ) HGF for
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experiment, pooled data from one or multiple individual oligos per experiment) upon HGF/Tet versus no HGF/Tet±s.e.m. (n¼4), obtained by densitometric

analysis. (f) Western blots for phospho-c-Met (Y1234-35), c-Met, phospho-ERK1/2 and tubulin in A549 cells pre-treated with the AIIB2 b1-integrin blocking

antibody (2mg ml� 1), an isotype control or no antibody, and stimulated without (� ) or with (þ ) HGF for 48 h in suspension. Graph represents mean phospho-

ERK1/2/tubulin ratios±s.e.m. with HGF normalized to the ratios with no HGF obtained by densitometric analysis (n¼ 3). t-Test, *Po0.05; **Po0.01; ***Po0.001.
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The HGF-stimulated increase of p52Shc co-immunoprecipita-
tion with c-Met was reduced significantly upon b1-integrin
knockdown (in detached A549 cells) or mutation (b1A-YYFF
cells) compared with controls (control knockdown or b1A cells)
(Fig. 6d). A ternary complex p52Shc–c-Met–b1-integrin was
detected post b1-integrin (Supplementary Fig. 7e) or c-Met
(Supplementary Fig. 7f) immnunoprecipitation. ATG5 siRNA
knockdown impaired the HGF-dependent co-immunoprecipita-
tion of p52Shc with c-Met (Fig. 6e) and with b1-integrin
(Supplementary Fig. 7e) in detached A549 cells. Accordingly,
sustained (but not transient) c-Met-dependent p52Shc phospho-
rylation (in A549 cells at 120 min of HGF stimulation and in 16 h
tetracycline stimulated c-Met-GFP cells, each in suspension) was
reduced significantly upon ATG5 siRNA knockdown (Fig. 6f,
Supplementary Fig. 7g). Moreover, while ATG5 siRNA knock-
down in cpdm cells had no influence on p52Shc phosphorylation
activation levels at 15 min of HGF, it reduced p52Shc phospho-
rylation at 120 min (Supplementary Fig. 7h). Furthermore,
phosphorylated p52Shc colocalization with the pool of c-Met
within LC3B vesicles upon HGF/tetracycline treatment was
reduced upon b1-integrin knockdown (Supplementary Fig. 7i,j).

Altogether, these results suggest that on ARE, active
conformation b1-integrin, through its NXXY domain, plays the
role of a scaffold between c-Met and p52Shc, leading to sustained
ERK1/2 activation.

c-Met–b1-integrin signal on ARE for cell survival in anoikis. As
c-Met–b1-integrin cooperation occurs in detached cells, we
investigated whether it plays a role in c-Met-dependent ancho-
rage-independent survival (or anoikis resistance). Cell death
under anchorage-independent cell culture conditions was inves-
tigated for the various cell lines (see Methods section). Thus
40–70% of cells maintained under non-adherent conditions for
24 h (NIH3T3 c-Met WT/M1268T, c-Met-GFP) or 48 h
(MDA-MB-468 and A549) were propidium iodide positive (PI).
Tetracycline, HGF treatment or M1268T mutation significantly
decreased the percentage of PI-positive cells (Supplementary
Fig. 8a–d). Under such conditions, a pool of internalized c-Met
colocalized with b1-integrin on ARE, as indicated by triple
colocalization with LC3B (Fig. 7a, Supplementary Fig. 8e and
Supplementary Data 1) while c-Met and b1-integrin could be
immunoprecipitated (Supplementary Fig. 8f).

Strikingly b1-integrin or ATG5/Beclin1 knockdown, but not
ATG13 knockdown, significantly reduced c-Met-dependent survival
(Fig. 7b, Supplementary Fig. 8g,h,j), with no effect on basal
cell death levels (Supplementary Fig. 8i); and reduced
c-Met-dependent ERK1/2 and p52Shc activation (Fig. 7c–e,
Supplementary Fig. 8k–r) with unchanged c-Met and b1-integrin
expression or c-Met phosphorylation levels (Supplementary Fig. 8k,l).

Independence of b1-integrin ligand on c-Met-dependent
ERK1/2 phosphorylation was confirmed using the b1-integrin
blocking antibody AIIB2 (Fig. 7f). Importantly, MEK inhibition
impaired the c-Met-dependent increase in cell survival
(Supplementary Fig. 8s). Clathrin siRNA knockdown reduced
HGF-dependent anchorage-independent survival in A549 cells,
confirming the requirement for endocytosis (Supplementary
Fig. 8s). Inhibition of recycling using Primaquine or RCP
siRNA43 actually increased this survival advantage
(Supplementary Fig. 8s). Thus, c-Met and b1-integrin recycling
per se does not determine cooperation leading to cell survival;
rather it is their intracellular localization on ARE which is
important.

c-Met–b1-integrin inside-in signalling mediates tumorigenesis.
We analysed the role of b1-integrin in c-Met-dependent

anchorage-independent growth in soft agar. The absence of
b1-integrin (siRNA knockdown in c-Met M1268T expressing
cells or GD25 cells) significantly decreased c-Met dependent
anchorage-independent growth in soft agar, compared with
controls (control siRNA and b1A cells) (Fig. 8a and
Supplementary Fig. 9a). Pharmacological MEK inhibition by
U0126 also inhibited the HGF effect on b1A colony sizes
(Supplementary Fig. 9b,c).

We investigated whether b1-integrin–c-Met cooperation
occurs inside the cells to stimulate anchorage-independent
growth, in vivo tumorigenesis and invasion, through assessing
the role of b1-integrin NXXY motifs. As for GD25 cells, HGF did
not increase the size of colonies in soft agar formed by b1A-YYFF
cells (Fig. 8a). GD25, b1A and b1A-YYFF cells were then grown
in soft agar þ /� HGF-secreting MRC5 fibroblasts24, þ /� the
c-Met inhibitor PHA-665752. MRC5 cells had no effect on colony
area formed by GD25 and b1A-YYFF cells but increased the
colony area formed by b1A cells. Moreover, PHA-665752
reduced b1A cell colony area (Supplementary Fig. 9d). GD25 or
b1A or b1A-YYFF cells were grafted subcutaneously into nude
mice together with MRC5 cells. PHA-665752 applied daily
(topically) to the growing tumours6, reduced b1A but not GD25
and b1A-YYFF tumours (Fig. 8b). When injected into zebrafish
embryos together with HGF, þ /� PHA-665752 to control for
c-Met activity, b1A cells were significantly more invasive than
b1A-YYFF cells; PHA-665752 inhibited the invasion of b1A but
not of b1A-YYFF cells (Fig. 8c). Finally, ATG5 siRNA
knockdown significantly reduced invasion of the A549 cells
incubated with HGF in zebrafish embryos, suggesting further that
b1-integrin–c-Met cooperation occurs on ‘ARE’ in vivo (Fig. 8d).

In summary, b1-integrin-dependent c-Met signalling promotes
anchorage-independent survival and growth, tumour growth and
metastasis, and occurs inside the cells. This novel b1-integrin
signalling supports c-Met-dependent survival in anchorage
independence conditions via a ligand- and adhesion-independent
scaffolding function, mediating p52Shc and ERK1/2 pathway
activation. We propose that b1-integrin triggers an ‘inside-in
signalling’ on the ‘ARE’, leading to c-Met-sustained signalling,
promoting cell survival in anchorage-independent growth condi-
tions, leading to enhanced metastasis.

Discussion
Our study reveals a novel non-adhesive function of b1-integrin in
cooperation with the RTK c-Met that we call ‘an inside-in
signalling’. This pathway leads to c-Met-dependent cell ancho-
rage-independent survival/growth, in vivo tumorigenesis, inva-
sion and metastasis. It occurs on LC3B-positive endomembranes,
belonging to a non-canonical autophagy pathway. These AREs
represent novel RTK signalling platforms.

We show for the first time that b1-integrin is a major regulator
of the c-Met pathway at two levels: (i) determining optimal
internalization of activated c-Met (as shown for PDGFR17) with
co-internalization of the two molecules; (ii) post-internalization,
on ARE, b1-integrin promotes c-Met-dependent sustained p52Shc

and ERK1/2 signalling, likely through acting as a scaffold linking
c-Met to p52Shc.

This novel b1-integrin-dependent c-Met signalling occurs in
detached cells and is independent of integrin adhesive properties.
Interestingly, b4-integrin was reported to mediate RTK signalling
by acting as a scaffold, independently of ligand binding, though
no known link with trafficking, of either the RTK or
b4-integrin44, was reported.

An active b1-integrin conformer, as triggered by the absence of
the endogenous b1-integrin inhibitor SHARPIN or incubation of
cells in MnCl2, appears to be required, as c-Met-sustained ERK1/
2 signalling is enhanced in these conditions. Recently, trafficked
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Figure 8 | c-Met–b1-integrin intracellular cooperation mediates c-Met-dependent anchorage-independent growth, in vivo tumorigenesis and invasion.

(a) Mean area of b1A, GD25 and b1A-YYFF colonies treated with (þ ) HGF in soft agar normalized to the mean area without HGF (� )±s.e.m. (n¼ 3,

each experiment performed in duplicate). (b) Tumour growth curves, over time, of GD25, b1A and b1A-YYFF cells mixed with MRC5 fibroblasts and treated

daily with DMSO or PHA-665752 (PHA, 100 nM) by topical application onto the surface of the skin where cells had been injected from day 1 after injection.

Graphs represent the mean tumour volumes (mm3)±s.e.m. of n¼ 5 mice per group measured daily. (c) Mean number of disseminated b1A and b1A-YYFF

cells per zebrafish embryo 24 h after injection in the yolk sac±s.e.m. Cells were incubated with HGF and treated with DMSO or PHA-665752 (PHA,

100 nM) (n¼ 3, average of 26 embryos per condition per experiment). (d) Mean number of disseminated A549 cells per embryo 24 h after injection in the

yolk sac±s.e.m. Cells were transfected with control or ATG5 siRNA and incubated without (� ) or with (þ ) HGF (n¼ 3, average of 39 embryos per

condition per experiment). (e) Model of b1-integrin–c-Met ‘inside-in’ signalling, promoting survival of cancer cells during metastasis and in the establishment

of tumours: In unstimulated cells, c-Met and b1-integrin form a complex at the plasma membrane. c-Met activation in either a ligand-dependent (A549/

MDA-MB-468/MEF cells) or -independent (c-Met-GFP/M1268T c-Met-expressing NIH3T3 cells) manner results in internalization and activation of

b1-integrin, which is the major form to internalize with c-Met. b1-integrin and its active conformation are in turn required for an optimal endocytosis of

c-Met. Thus, they both need each other for their optimal endocytosis. They co-internalize in a clathrin-dependent manner. Internalized c-Met-b1-integrin

complex progressively accumulates on ‘autophagy-related endomembranes’ (ARE), which are LC3B-positive endomembranes. b1-integrin promotes

sustained c-Met signalling from ARE likely through acting as an adaptor that links c-Met to p52Shc, which in turn activates the downstream signalling

pathway ERK1/2. Altogether, c-Met-b1-integrin cooperation, that we named ‘inside-in signalling’ is required for anchorage-independent survival that may

help cancer cells to survive as they invade from the primary tumour, travel from the primary tumour to the secondary site during metastasis, leading to

tumour growth and metastasis. t-Test for a and c; ANOVA test for b; Mann–Whitney U-test for d; *Po0.05; **Po0.01; ***Po0.001; NS: not significant.
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active b1-integrin was shown to reside significantly longer on the
endosomes compared with the fast recycling inactive b1-integ-
rins28, consistent with our notion of sustained signalling of c-Met
from the ‘ARE’.

The classical function of autophagosomes, through fusion with
lysosomes, is to promote degradation of intracellular materials
and organelles, maintaining cellular homoeostasis40,45. Recently
however, phosphorylated Src was shown to localize on
autophagosomes in FAK� /� cells, leading to its degradation
and cell survival46. Upon EGF stimulation, ERK1/2, and its
upstream kinase MEK, localize to pre-autophagosomes and
autophagy proteins promote ERK1/2 phosphorylation41.

We propose that ‘ARE’ represent novel platforms for efficient
spatial coordination of signalling cascades. Our results suggest
that although c-Met–b1-integrin form a complex independently
of their localization on ‘ARE’, the complex needs to localize to
‘ARE’ to allow the b1-integrin scaffolding function. Furthermore
our data indicate that c-Met activation and c-Met and b1-integrin
stability are not influenced by autophagy while c-Met activity, or
b1-integrin expression and NXXY domain, have no role on
autophagy. b1-integrin-LC3B co-localization has been reported
previously47, however, this is the first report of c-Met localization
on LC3B and Beclin1-positive endomembranes, together with
b1-integrin. Thus, c-Met and b1-integrin co-internalize, and
progressively accumulate on LC3B and Beclin1-positive vesicles,
‘ARE’ (optimal enrichment at 120 min of HGF stimulation).
Although ‘ARE’ require further characterization, our results
suggest that these endomembranes belong to a recently described
non-canonical autophagy pathway, which was so far shown
associated with macroendocytic engulfment processes34–37. This
highlights a novel and unexpected intracellular localization for
c-Met signalling.

Metastatic epithelial cancer cells detach from the ECM and
survive, due to their anchorage-independent properties, for
sufficient time to facilitate distal colonization48. Our results
suggest that, in detached cells, c-Met uncouples survival from
adhesion and uses b1-integrin as an adaptor to amplify c-Met
signalling to ERK1/2, on ‘ARE’, leading to increased survival (see
model in Fig. 8e). Thus, this signalling may occur during specific
time-windows of the metastatic process in addition to the
classical adhesive property of b1-integrin, which also likely
cooperates with c-Met during the metastatic process such as
during cell invasion.

Integrins are considered to be important cancer therapy targets
and several inhibitors, which alter the adhesive property of
integrins49–53, are being tested in the clinic. The results presented
here suggest that b1-integrin also contributes to cancer metastasis
using signalling properties independent from its adhesive
function. This suggests that alternative therapies to fully alter
integrin functions are needed. Targeting integrin signalling in
addition to adhesion may have relevance for cancer therapy.
Present models of integrin ‘inside-out’ and ‘outside-in’ signalling
may need to be refined to encompass the potential contribution of
‘inside-in signalling’.

Methods
Cell lines and cell culture. The b1-integrin-deficient GD25 cell line (GD25),
GD25 cells expressing wild-type b1A (b1A) or mutant b1A (b1A-YYFF) (gift from
S. Johansson)23 were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS, Sigma) and 2 mM L-glutamine, with the
addition of puromycin (5 mg ml� 1) for the b1A and b1A-YYFF cells. For
stimulation experiments GD25 cell lines were plated in 6-well plates at 2.5� 105

cells per well for 48 h. Twenty-four hours before stimulation, the cells were starved
in serum-free medium and stimulated in serum-free medium with 50 ng ml� 1 of
HGF for the times indicated.

T-REx-293 cell line (Invitrogen Life Technologies) was maintained in DMEM
containing 10% FBS and 5 mg ml� 1 blasticidin (Invitrogen Life Technologies).
T-REx-293 cell line was transfected with Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. T-REx-293 cell line stably transfected
with c-Met-GFP (‘c-Met-GFP cells’) was established by selection with Zeocin
(400 mg ml� 1; Invitrogen Life Technologies) following the manufacturer’s
instructions. Such cells were maintained in culture as the T-REx-293 cell line with
the addition of 400 mg ml� 1 of Zeocin. Expression of c-Met-GFP was induced by
treating the stable cell line with 0.1 mg ml� 1 of tetracycline for indicated times
(16 h for most experiments).

NIH3T3 cells expressing c-Met WT or M1268T murine cDNA were a gift from
Prof. G. Vande Woude and were cultured in DMEM containing 10% donor calf
serum (Gibco Life Technologies)6,54.

A549 cells (ATCC) were cultured in DMEM containing 10% FBS and 2 mM L-
glutamine.

MDA-MB-468 cells (ATCC) were cultured in phenol-free DMEM containing
10% FBS and 2 mM L-glutamine.

MRC5 cells (ATCC) were maintained in Minimum essential medium
containing 10% FBS. Conditioned media was taken after three days of culture when
cells were 70% confluent.

ATG13 knockout mouse embryonic fibroblasts (MEFs) and the reconstituted
Flag-S-tagged WT ATG13 MEFs were a gift from Dr. Noor Gamooh and were
previously published38. The MEFs were cultured in DMEM containing 10% FBS
and 2 mM L-glutamine.

The Flag-S-tagged WT ATG13 MEFs were cultured with puromycin
(1 mg ml� 1).

All cells were maintained at 37 �C in a humidified 8% CO2 atmosphere.

Constructs. The human hepatocyte growth factor receptor (c-Met) open reading
frame (ORF) was first introduced into pEGFP-N1 (BD Clontech). c-Met ORF was
amplified by PCR, using the flanking primers 50-ccgctcgagatgaaggcccccgctgtgc-30

(Xho I site) and 50-cccccaagcttcaatgatgtctcccagaaggaggc-30 (Hind III site) (the
underlined sequence represents the mutated stop codon). Plasmid containing
c-Met-EGFP construct was then digested with Eco RI and NotI restriction enzymes
and was introduced into pcDNA 4/TO (Invitrogen Life Technologies) containing
full-length WT c-Met digested with both restriction enzymes. Construct was
checked by full sequencing. GFP-Rab21 construct was described31 and a5-integrin-
GFP construct was provided by Horwitz55.

Reagents. Purified human recombinant HGF was obtained from R&D Systems
and used at 50 ng ml� 1 (all experiments using the GD25 cell model and 48 h
stimulations in all cell lines) or 100 ng ml� 1 (all other experiments).

HGF-AlexaFluor-555 was generated using the Alexa Fluor 555 Microscale
Protein Labelling kit (Thermofisher) according to the manufacturer’s instructions.

The following antibodies were used:
—Mouse monoclonals anti-: GFP (CR-UK), LC3B (clone 5F10, Novacastra),

tubulin (Sigma-Aldrich), mouse c-Met extracellular domain (B2, sc-8057,
Santa Cruz).

—Rabbit polyclonals anti-: human c-Met intracellular domain (sc-10, Santa
Cruz Biotechnologies and CVD13, Invitrogen), phospho-c-Met (Tyrosine 1349 or
Tyrosine 1234/1235, Cell Signalling), phospho-ERK1/2 (Cell Signalling and R&D
Systems (MAB1018)), pan-ERK1/2 (Upstate), phospho-SHC Y239/240 (CS2434,
Cell Signalling), pan-SHC (CS2432, Cell Signalling), ATG5 (TMD-PH-AT5,
Cosmo Bio Co Ltd.), LC3B (CS2775, Cell signalling), early endosome antigen 1
(EEA1) (Santa Cruz Biotechnology), Beclin1 (CS3738, Cell Signalling), ATG13
(SAB4200100, Sigma-Aldrich).

—Goat polyclonals anti-: human c-Met extracellular domain (AF276, R&D
Systems), mouse c-Met extracellular domain (AF527, R&D Systems), early
endosome antigen 1 (EEA1) (Santa Cruz Biotechnology).

—Rat monoclonal anti-mouse b4-integrin (553745, BD Biosciences).
The following b1-integrin antibodies were used:
—Mouse monoclonals anti-: human b1-integrin, clone DF7 (Enzo Life

Sciences), human b1-integrin (MAB2252, Millipore), human CD29 clone K20
(Beckman Coulter) labelled with AlexaFluor-488.

—Rat monoclonals anti-: mouse b1-integrin, clone MB1.2 (MAB1997,
Millipore), b1-integrin in active conformation, clone 9EG7 (BD Biosciences).

—Rat polyclonal anti-: b1-integrin AIIB2 (Developmental Studies Hybridoma
Bank).

—Rabbit polyclonal anti-: human b1-integrin AB1952 (Millipore).
The following blocking b1-integrin antibodies were used:
—Rat polyclonal anti- b1-integrin AIIB2 (Developmental Studies Hybridoma

Bank) at 2 mg ml� 1 and LEAF purified anti-mouse CD29 Armenian hamster IgG
clone HMb1-1 at the concentration indicated.

The secondary antibodies used for Western blot were peroxidase-labelled sheep
anti-mouse, donkey anti-rabbit IgG or goat anti-rat IgG (VWR international) used
at 1:1,000.

The secondary antibodies used for immunofluorescence experiments were
Alexa 488-conjugated donkey anti-rabbit/mouse/goat/rat IgG, (Molecular Probes,
Life Technologies), Cy3- or Cy5-conjugated affinity-purified donkey anti-mouse/
rabbit/goat/rat IgG (Jackson ImmunoResearch) used at 1:500.

The secondary antibodies used for FACS were PE-, APC-conjugated (Becton
Dickinson) or AlexaFluor-488 conjugated (Molecular Probes, Life Technologies)
used at 1:250.
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Fibronectin (from bovine plasma) (1:100), Laminin (1:100) and poly-L-lysine
(0.01%) were obtained from Sigma-Aldrich and used to coat the wells.

Prolong gold mounting media containing DAPI was obtained from Life
Technologies.

Poly-L-lysine, tetracycline, Dynasore, PHA565752 (PHA) and MnCl2 were
obtained from Sigma-Aldrich. LY294002, SU1498 and SU11274 were obtained
from Calbiochem.

Transfections of cDNA and RNAi. Transfections of cDNA constructs were car-
ried out using Lipofectamine 2000 (Invitrogen Life Technologies) as described
previously3 or by electroporation using Amaxa Nucleofactor Technology following
the manufacturer’s instructions (Lonza).

Transfections of siRNA were carried out using oligofectamine (Invitrogen Life
Technologies) as described previously3, using HiPerFect reagent (Qiagen) or by
electroporation using Amaxa Nucleofactor technology following the
manufacturer’s instructions (Lonza). Cells were harvested or subjected to
experimental procedures 72 h after transfection unless otherwise stated. NIH3T3
cells were an exception with experimental procedures conducted 48 h after
transfection unless otherwise stated.

See Supplementary Table 1 for details on the siRNA target sequences used in
this study.

Cell stimulation in suspension and anoikis assay. Cells were cultured for 3 days
on plastic (after transfection with siRNA for some experiments), detached using
trypsin, harvested with 0.2% Soya bean trypsin inhibitor (Sigma-Aldrich) in
serum-free media, then washed in serum-free media and centrifuged.

For cell stimulation in suspension, 3� 105 cells were transferred to 2 ml
eppendorf tubes in 500 ml of serum-free media, maintained at 37 �C for 3 h and
then stimulated with 100 ng per ml HGF for 120 min. Cells were put on ice and
harvested for western blot or cytospun and fixed for immunofluorescence.

For the anoikis assay 1� 106 cells were transferred to 50 ml falcon tubes for 24 h
(c-Met-GFP and NIH3T3 cells) or 48 h (MDA-MB-468 and A549 cells) in 10 ml of
serum-free (MDA-MB-468, NIH3T3 and c-Met-GFP) or full serum (A549) media
þ /� tetracycline (c-Met-GFP) or ±50 ng ml� 1 HGF (A549 and MDA-MB-468)
at 37 �C. Cells were put on ice and either harvested for western blot, cytospun and
fixed for immunofluorescence, or stained with propidium iodide (1/100, Life
Technologies) for 15 min. The percentage of dead cells was determined by
measuring those cells that could incorporate propidium iodide, using a FACS
Calibur.

Western blot analysis. Cell were harvested in radioimmunoprecipitation buffer
(RIPA) or directly in Laemmli sample buffer (Invitrogen) and boiled for 10 min.
Samples were loaded on 4–12% gradient polyacrylamide gels (Invitrogen). Sepa-
rated proteins were transferred to a 0.45-mm nitrocellulose transfer membrane
(Whatman). Protein loading was checked by staining with Ponceau Red. Mem-
branes were then blotted with appropriate first antibodies at a dilution of 1:1,000.
Specific binding of antibodies was detected with appropriate peroxidase-conjugated
secondary antibodies and visualized by enhanced chemiluminescence detection
(GE Healthcare)5. Densitometric analyses of immunoblots were performed using
ImageJ 1.47v (National Institute of Health). Full blots are included in the
Supplementary Information (Supplementary Figs 10 and 11).

Co-immunoprecipitations. Following treatment with HGF for the indicated time,
and in cells in suspension when indicated in the figure legend, cells were placed on
ice, washed with cold PBS and lysed in a buffer containing 0.5% Triton X-100,
20 mM Tris pH7.5, 150 mM NaCl, and protease and phosphatase inhibitors in PBS.
Cell lysates were collected, rotated for 30 min at 20 r.p.m. on a wheel at 4 �C,
centrifuged for 3 min at 2,000 r.p.m. at 4 �C, and the supernatants were collected.
Fifty microliter of the supernatant was reserved for total input. The remaining
lysates were pre-cleared by adding 25 ml of washed A/G agarose beads for 1 h at
4 �C on a rotating wheel. The pre-cleared lysates were centrifuged and the super-
natant transferred into new tubes. Two microgram of antibody (c-Met: B2 anti-
mouse; b1-integrin: MAB1997, Millipore), 25 ml of washed A/G beads were added
and the samples were rotated for 2 h at 4 �C. The lysates were centrifuged, the
pellets were collected and washed three times with lysis buffer and three times with
wash buffer: 20 mM Tris pH7.5, 150 mM NaCl, and protease and phosphatase
inhibitors. The samples were analysed by Western blotting. Quantifications were
obtained by densitometric analysis of the Western blots. Values were first thre-
sholded on IgG values and then normalized on the levels of the immunoprecipi-
tated protein (c-Met or b1-integrin). The levels of co-immunoprecipitation at
0 min HGF was set as 1 and the fold change in levels upon HGF was shown.

Immunofluorescence and confocal microscopy. Cells (5� 104) were plated onto
coverslips coated with 0.01% poly-L-lysine (Sigma). Immunofluorescence and
confocal microscopy analyses were carried out as described4. 9EG7 was diluted in
PBS containing 5 mM EGTA and 2 mM MgCl2. Each image represents a single
section of 0.7 mm thickness.

Confocal image analyses. Picture fields were chosen arbitrarily on the basis of
DAPI (4, 6-diamidino-2-phenylindole) staining and images were taken in unsa-
turated conditions. A minimum of 50–100 cells were analysed per condition per
experiment.

For the quantification of HGF-AlexaFluor-555 cellular uptake, the percentage of
positive cells or the average red pixels/nuclei (DAPI) were measured using the Zeiss
LSM710 Zen software, as indicated in the figure legend.

For double colocalization analysis (for example c-Met-b1-integrin), pixels from
each channel were interactively thresholded to remove background pixels using the
Zeiss LSM710 Zen software and applied to the whole dataset. The following
formula was applied: c-Met–b1 overlapping pixels/total c-Met pixels.

For triple colocalization analysis of c-Met–b1-integrin-endosomal marker, a
mask of c-Met–b1 double colocalization was made using the Zeiss LSM710 Zen
software. Then triple colocalization of the colocalized c-Met and b1-integrin pixels
(¼mask) with the intracellular marker pixels was analysed using MetaMorph
software. The following formula was used: (c-Met–b1 coloc/endosomal
marker¼mask)/c-Met–b1 coloc.

Data was further normalized on total c-Met when GFP-tagged constructs were
used, when different cells were compared (b1A/b1A-YYFF) or when analysing the
accumulation of c-Met–b1-integrin in intracellular compartments upon different
time points of HGF stimulation.

Randomization analysis was calculated with the JaCoP plugin56 for ImageJ
(National Institutes of Health, Bethesda). The co-localization index is represented
by Pearson’s coefficient calculated following Costes randomization (200 cycles) and
automatic threshold calculation57. The distribution of Pearson’s coefficients of
randomized images was fitted to a Gaussian distribution, before calculating the
P value for differences between the Pearson’s coefficient of the actual images, and
that of the randomized images. For triple co-localization analysis, two of the three
images where combined using the ‘Image Calculator’ function with operator ‘AND’
included in ImageJ and the resulting image was tested for co-localization with the
third image. All possible permutations were tested and average Pearson’s
coefficient is provided as result of the triple co-localization.

Low-light live imaging. Cells were grown on 35-mm glass-bottom microwell
dishes (Matec, Northborough, MA, USA) coated with poly-L-lysine. Time-lapse
low-light imaging was acquired on an Axiovert TM 135 microscope (Carl Zeiss)
equipped with a 63� numerical aperture (NA) 1.3 objective lens and an Orca ER
CCD camera (Hamamatsu) using Acquisition Manager (Kinetic Imaging).
Quicktime movies were constructed from sets of sequential TIFFs using the AQM
2001 Kinetic Acquisition Manager software (Kinetic Imaging, Liverpool, UK).

Time-lapse confocal. Cells were cultured on a MatTek dish in phenol red-free
DMEM supplemented with 10% FBS. Live cell confocal imaging was performed on
LSM710 inverted confocal microscopes equipped with a 63� 1.4 Plan-Apochromat
oil immersion objective (Carl Zeiss). Imaging was performed in an environmental
chamber at 37 �C supplemented with 5% CO2. Pictures were acquired every 14 s
with a section depth of 1.1 mm.

Proximity ligation assay. Cells (3� 104) were cultured and stimulated þ /�
HGF on coverslips, fixed in 4% PFA and quenched with NH4CL. PLA probing was
carried out using PLA probe anti-mouse PLUS and PLA probe anti-goat MINUS
kits following manufacturer’s protocols (Duolink, Sigma-Aldrich). Samples were
incubated in primary antibodies diluted 1:100 in the antibody diluent at room
temperature for 50 min. Detection Reagents Orange was used following manu-
facturer’s instructions. Samples were mounted using Duolink In Situ Mounting
Medium with DAPI, but without air-drying the samples. For the quantification, at
least five random fields, across the coverslips based on DAPI staining, corre-
sponding to at least 30 cells per coverslips, were pictured and the number of
fluorescence spots/nucleus was quantified using Image J software.

Flow cytometry. To determine the level of b1-integrin (activated or pan) at the
plasma membrane, cells were trypsinized and washed two times in cold FACS
buffer (PBS 2% serum), incubated with antibodies against activated (9EG7, 1/50) or
pan (DF7 or MB1.2, 1/100) b1-integrin in cold FACS buffer. After incubation on
ice, cells were washed and incubated on ice with PE or APC conjugates. When
phospho-ERK1/2 was being analysed, 1� 106 cells were fixed in 4% PFA for
10 min at 37 �C and then permeabilized in 90% ice-cold methanol for 30 min on
ice. Cells were incubated with a phospho-ERK1/2 antibody (R&D Systems
(MAB1018)) at 20mg ml� 1 for 1 h. After incubation on ice, cells were washed and
incubated on ice with a BD Phosflow PE anti-rabbit secondary antibody (1:5). Flow
cytometry data were acquired on a FACS Calibur (Becton Dickinson).

Biotinylation internalization assay. Cells were incubated with HGF except the
M1268T cells.

On ice, cell surface proteins were labelled with 0:2 mg ml� 1 sulpho-NHS-SS-
biotin in PBS for 45 min. Labelled cells were washed with cold PBS and incubated
at 37 �C in culture medium, to allow protein trafficking. At the indicated times, the
medium was aspirated and the dishes were transferred to ice and washed with cold
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PBS. Biotin was removed from proteins remaining at the cell surface by reduction
for 15 min with 180 mM of the membrane-impermeant reducing agent MesNa
(sodium 2 mercaptoethane sulphonate, Sigma) in 50 mM Tris and 100 mM NaCl at
pH 8.6. MesNa was quenched by the addition of 180 mM iodoacetamide (IAA,
Sigma) for 10 min. Cells were lysed. Lysates were passed three times through a
27-gauge needle and clarified by centrifugation (17,000g); equal protein amounts
received streptavidin-agarose beads and were agitated at 4 �C for 2 h; beads were
collected by centrifugation (7,000g), washed in lysis buffer and proteins were
extracted by heating at 95 �C with sample buffer.

In each internalization assay, two controls were carried out. To measure the
total c-Met or b1-integrin at the surface, biotinylated cells at 4�C were lysed
without biotin reduction. To verify the efficiency of the surface biotin removal, the
biotin reduction and MesNa quenching steps were carried out on cells that had
remained on ice (time 0) and lysis was carried out.

Equivalent volumes were analysed in a c-Met or b1-integrin (as relevant)
western blotting assay and densitometric analyses were carried out. The
percentages of internalized c-Met or b1-integrin were calculated using the
following formulae: internalized receptor¼ (receptor level after incubation at
37 �C)� (receptor level at time 0)/(total surface receptor) � 100.

Cell adhesion assay. Cells were detached with trypsin, treated with soybean
trypsin inhibitor in serum-free medium, pre-treated with the indicated b1-integrin
blocking antibody for 15 min and then seeded onto a well of 24-well plate pre-
coated with fibronectin. The cells were incubated for 30 min, rinsed twice with PBS
then fixed with 4% paraformaldehyde (PFA) and stained with haematoxylin. Three
pictures were taken per condition per experiment with phase contrast microscope
and cells counted. At least 50 cells were counted in total per condition per
experiment.

Soft agar assay. A total of 500 cells in a single-cell suspension were mixed, on ice,
in 5 ml of medium with 0.3% agarose. After 20 min, 1 ml of culture medium was
added and cells were incubated at 37 �C. Medium was changed daily. For GD25/
b1A/b1A-YYFF cells, MRC5 fibroblasts’s conditioned media or HGF (14 ng ml� 1)
(as specified in Figure legends) was added, or not, daily, from day 8 and results
analysed at day 13. For NIH3T3 WT/M1268T cells, results were analysed at day 6.
The wells were pictured on a Zeiss, Stemi SV11 microscope and the total area of the
colonies was determined with ImageJ software.

Tumour growth and metastatic lung assay. Female nude mice (4-6 weeks old,
CD1 Nu/Nu, Charles River UK) were used, in accordance with UK Coordination
Committee on Cancer Research guidelines, Home Office regulations and QMUL
Ethics boards.

For the tumour growth assay, cells were inoculated subcutaneously in the flank
region of nude mice. WT and M1268T (5� 105) c-Met-expressing cells were
transfected with control or b1 siRNA 24 h before subcutaneous or tail vein
injection. GD25, b1A and b1A-YYFF cells (5� 105) were injected together with
2.5� 105 MRC5 fibroblasts. DMSO or PHA-665752 (PHA) was applied daily
topically onto the surface of the skin where GD25, b1A and b1A-YYFF cells had
been injected from day 1 after injection. Tumour volumes were calculated by using
the formula: length�width2� 0.52. When tumours reached 1 cm in length, mice
were killed humanely.

For the experimental metastasis assay, 5� 105 cells were injected into the tail
vein of mice. Ten days later mice were killed and the lungs were removed, weighed
and analysed for lung metastasis.

Zebrafish invasion assay. The Casper strain (lack pigment) of zebrafish was used.
Fish were kept at 28 �C in aquaria with day/night cycles (10-h dark/14-h light
periods). Zebrafish embryos were dechorionated and anesthetized with tricaine
before injection. Using a manual injector (Picospritzer III), 100 cell tracker’ stained
cells (50 with Orange CMTMR, for example siRNA control, and 50 with green
CMFDA (10 mol l), for example siRNA b1-integrin) were injected together into the
yolk sack of 48 h old embryos and embryos maintained at 35 �C. The colour of each
cell type was alternated within each experiment to ensure results are not an artefact
of the dye. The number of disseminated cells were counted 24 h after injection of
the cells, using a Zeiss Axioplan epifluorescence microscope. A minimum of 20
(mean 30) embryos were analysed per condition (for example, WT control siRNA
knockdown cells) per experiment. Any embryos showing cells in their body 2 h
post injection were removed from the study. When inhibitors were used cells were
pre-treated before injection and the inhibitors were added to the water of the
zebrafish embryos.

Statistical analysis. A two-tailed unpaired Student’s t-test was carried out
between different conditions. A two-way ANOVA was carried out on the GD25,
b1A and b1A-YYFF in vivo tumour growth curves and a Mann–Whitney U test
was carried out on the in vivo invasion of A549 cells in zebrafish embryos.
Quantitative data of the indicated number of independent experiments (‘n¼ ’ in
figure legends) are expressed as means±s.e.m.

Data availability. The data supporting the findings of this study are available from
the corresponding author on request.
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