312 research outputs found

    Phenotype and Genetics of Progressive Sensorineural Hearing Loss (Snhl1) in the LXS Set of Recombinant Inbred Strains of Mice

    Get PDF
    Progressive sensorineural hearing loss is the most common form of acquired hearing impairment in the human population. It is also highly prevalent in inbred strains of mice, providing an experimental avenue to systematically map genetic risk factors and to dissect the molecular pathways that orchestrate hearing in peripheral sensory hair cells. Therefore, we ascertained hearing function in the inbred long sleep (ILS) and inbred short sleep (ISS) strains. Using auditory-evoked brain stem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements, we found that ISS mice developed a high-frequency hearing loss at twelve weeks of age that progressed to lower frequencies by 26 weeks of age in the presence of normal endocochlear potentials and unremarkable inner ear histology. ILS mice exhibited milder hearing loss, showing elevated thresholds and reduced DPOAEs at the higher frequencies by 26 weeks of age. To map the genetic variants that underlie this hearing loss we computed ABR thresholds of 63 recombinant inbred stains derived from the ISS and ILS founder strains. A single locus was linked to markers associated with ISS alleles on chromosome 10 with a highly significant logarithm of odds (LOD) score of 15.8. The 2-LOD confidence interval spans ∼4 Megabases located at position 54–60 Mb. This locus, termed sensorineural hearing loss 1 (Snhl1), accounts for approximately 82% of the phenotypic variation. In summary, this study identifies a novel hearing loss locus on chromosome 10 and attests to the prevalence and genetic heterogeneity of progressive hearing loss in common mouse strains

    High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss

    Get PDF
    BACKGROUND: Cochlear outer hair cells change their length in response to variations in membrane potential. This capability, called electromotility, is believed to enable the sensitivity and frequency selectivity of the mammalian cochlea. Prestin is a transmembrane protein required for electromotility. Homozygous prestin knockout mice are profoundly hearing impaired. In humans, a single nucleotide change in SLC26A5, encoding prestin, has been reported in association with hearing loss. This DNA sequence variation, IVS2-2A>G, occurs in the exon 3 splice acceptor site and is expected to abolish splicing of exon 3. METHODS: To further explore the relationship between hearing loss and the IVS2-2A>G transition, and assess allele frequency, genomic DNA from hearing impaired and control subjects was analyzed by DNA sequencing. SLC26A5 genomic DNA sequences from human, chimp, rat, mouse, zebrafish and fruit fly were aligned and compared for evolutionary conservation of the exon 3 splice acceptor site. Alternative splice acceptor sites within intron 2 of human SLC26A5 were sought using a splice site prediction program from the Berkeley Drosophila Genome Project. RESULTS: The IVS2-2A>G variant was found in a heterozygous state in 4 of 74 hearing impaired subjects of Hispanic, Caucasian or uncertain ethnicity and 4 of 150 Hispanic or Caucasian controls (p = 0.45). The IVS2-2A>G variant was not found in 106 subjects of Asian or African American descent. No homozygous subjects were identified (n = 330). Sequence alignment of SLC26A5 orthologs demonstrated that the A nucleotide at position IVS2-2 is invariant among several eukaryotic species. Sequence analysis also revealed five potential alternative splice acceptor sites in intron 2 of human SLC26A5. CONCLUSION: These data suggest that the IVS2-2A>G variant may not occur more frequently in hearing impaired subjects than in controls. The identification of five potential alternative splice acceptor sites in intron 2 of human SLC26A5 suggests a potential mechanism by which expression of prestin might be maintained in cells carrying the SLC26A5 IVS2-2A>G DNA sequence variation. Additional studies are needed to evaluate the effect of the IVS2-2A>G transition on splicing of SLC26A5 transcripts and characterize the hearing status of individuals homozygous for the IVS2-2A>G variant

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    DNA Sequence Analysis of SLC26A5, Encoding Prestin, in a Patient-Control Cohort: Identification of Fourteen Novel DNA Sequence Variations

    Get PDF
    Prestin, encoded by the gene SLC26A5, is a transmembrane protein of the cochlear outer hair cell (OHC). Prestin is required for the somatic electromotile activity of OHCs, which is absent in OHCs and causes severe hearing impairment in mice lacking prestin. In humans, the role of sequence variations in SLC26A5 in hearing loss is less clear. Although prestin is expected to be required for functional human OHCs, the clinical significance of reported putative mutant alleles in humans is uncertain.To explore the hypothesis that SLC26A5 may act as a modifier gene, affecting the severity of hearing loss caused by an independent etiology, a patient-control cohort was screened for DNA sequence variations in SLC26A5 using sequencing and allele specific methods. Patients in this study carried known pathogenic or controversial sequence variations in GJB2, encoding Connexin 26, or confirmed or suspected sequence variations in SLC26A5; controls included four ethnic populations. Twenty-three different DNA sequence variations in SLC26A5, 14 of which are novel, were observed: 4 novel sequence variations were found exclusively among patients; 7 novel sequence variations were found exclusively among controls; and, 12 sequence variations, 3 of which are novel, were found in both patients and controls. Twenty-one of the 23 DNA sequence variations were located in non-coding regions of SLC26A5. Two coding sequence variations, both novel, were observed only in patients and predict a silent change, p.S434S, and an amino acid substitution, p.I663V. In silico analysis of the p.I663V amino acid variation suggested this variant might be benign. Using Fisher's exact test, no statistically significant difference was observed between patients and controls in the frequency of the identified DNA sequence variations. Haplotype analysis using HaploView 4.0 software revealed the same predominant haplotype in patients and controls and derived haplotype blocks in the patient-control cohort similar to those generated from the International HapMap Project.Although these data fail to support a hypothesis that SLC26A5 acts as a modifier gene of GJB2-related hearing loss, the sample size is small and investigation of a larger population might be more informative. The 14 novel DNA sequence variations in SLC26A5 reported here will serve as useful research tools for future studies of prestin

    Mechanistic Insights into a Novel Exporter-Importer System of Mycobacterium tuberculosis Unravel Its Role in Trafficking of Iron

    Get PDF
    Elucidation of the basic mechanistic and biochemical principles underlying siderophore mediated iron uptake in mycobacteria is crucial for targeting this principal survival strategy vis-Γ -vis virulence determinants of the pathogen. Although, an understanding of siderophore biosynthesis is known, the mechanism of their secretion and uptake still remains elusive.Here, we demonstrate an interplay among three iron regulated Mycobacterium tuberculosis (M.tb) proteins, namely, Rv1348 (IrtA), Rv1349 (IrtB) and Rv2895c in export and import of M.tb siderophores across the membrane and the consequent iron uptake. IrtA, interestingly, has a fused N-terminal substrate binding domain (SBD), representing an atypical subset of ABC transporters, unlike IrtB that harbors only the permease and ATPase domain. SBD selectively binds to non-ferrated siderophores whereas Rv2895c exhibits relatively higher affinity towards ferrated siderophores. An interaction between the permease domain of IrtB and Rv2895c is evident from GST pull-down assay. In vitro liposome reconstitution experiments further demonstrate that IrtA is indeed a siderophore exporter and the two-component IrtB-Rv2895c system is an importer of ferrated siderophores. Knockout of msmeg_6554, the irtA homologue in Mycobacterium smegmatis, resulted in an impaired M.tb siderophore export that is restored upon complementation with M.tb irtA.Our data suggest the interplay of three proteins, namely IrtA, IrtB and Rv2895c in synergizing the balance of siderophores and thus iron inside the mycobacterial cell

    Molecular epidemiology of DFNB1 deafness in France

    Get PDF
    BACKGROUND: Mutations in the GJB2 gene have been established as a major cause of inherited non syndromic deafness in different populations. A high number of sequence variations have been described in the GJB2 gene and the associated pathogenic effects are not always clearly established. The prevalence of a number of mutations is known to be population specific, and therefore population specific testing should be a prerequisite step when molecular diagnosis is offered. Moreover, population studies are needed to determine the contribution of GJB2 variants to deafness. We present our findings from the molecular diagnostic screening of the GJB2 and GJB6 genes over a three year period, together with a population-based study of GJB2 variants. METHODS AND RESULTS: Molecular studies were performed using denaturing High Performance Liquid Chromatograghy (DHPLC) and sequencing of the GJB2 gene. Over the last 3 years we have studied 159 families presenting sensorineural hearing loss, including 84 with non syndromic, stable, bilateral deafness. Thirty families were genotyped with causative mutations. In parallel, we have performed a molecular epidemiology study on more than 3000 dried blood spots and established the frequency of the GJB2 variants in our population. Finally, we have compared the prevalence of the variants in the hearing impaired population with the general population. CONCLUSION: Although a high heterogeneity of sequence variation was observed in patients and controls, the 35delG mutation remains the most common pathogenic mutation in our population. Genetic counseling is dependent on the knowledge of the pathogenicity of the mutations and remains difficult in a number of cases. By comparing the sequence variations observed in hearing impaired patients with those sequence variants observed in general population, from the same ethnic background, we show that the M34T, V37I and R127H variants can not be responsible for profound or severe deafness

    Multicolour-banding fluorescence in situ hybridisation (mbanding-FISH) to identify recurrent chromosomal alterations in breast tumour cell lines

    Get PDF
    Recurrent chromosome breakpoints in tumour cells may point to cancer genes, but not many have been molecularly characterised. We have used multicolour-banding fluorescence in situ hybridisation (mbanding-FISH) on breast tumour cell lines to identify regions of chromosome break created by inversions, duplications, insertions and translocations on chromosomes 1, 5, 8, 12 and 17. We delineate a total of 136 regions of break, some of them occurring with high frequency. We further describe two examples of dual-colour FISH characterisation of breakpoints, which target the 1p36 and 5p11–12 regions. Both breaks involve genes whose function is unknown to date. The mbanding-FISH strategy constitutes an efficient first step in the search for potential cancer genes

    Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previously published reports have described an effective biocontrol agent named <it>Pseudomonas </it>sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of <it>P. aeruginosa</it>, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures.</p> <p>Results</p> <p>The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved <it>P. aeruginosa </it>core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a <it>capB </it>gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other <it>P. aeruginosa </it>strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of <it>P. aeruginosa </it>strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28Β°C in three non-phage genomic islands and one prophage but none at 37Β°C.</p> <p>Conclusions</p> <p>The <it>P. aeruginosa </it>strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.</p

    Ξ±-Thalassemia Impairs the Cytoadherence of Plasmodium falciparum-Infected Erythrocytes

    Get PDF
    Ξ±-Thalassemia results from decreased production of Ξ±-globin chains that make up part of hemoglobin tetramers (Hb; Ξ±(2)Ξ²(2)) and affects up to 50% of individuals in some regions of sub-Saharan Africa. Heterozygous (-Ξ±/Ξ±Ξ±) and homozygous (-Ξ±/-Ξ±) genotypes are associated with reduced risk of severe Plasmodium falciparum malaria, but the mechanism of this protection remains obscure. We hypothesized that Ξ±-thalassemia impairs the adherence of parasitized red blood cells (RBCs) to microvascular endothelial cells (MVECs) and monocytes--two interactions that are centrally involved in the pathogenesis of severe disease.We obtained P. falciparum isolates directly from Malian children with malaria and used them to infect Ξ±Ξ±/Ξ±Ξ± (normal), -Ξ±/Ξ±Ξ± and -Ξ±/-Ξ± RBCs. We also used laboratory-adapted P. falciparum clones to infect -/-Ξ± RBCs obtained from patients with HbH disease. Following a single cycle of parasite invasion and maturation to the trophozoite stage, we tested the ability of parasitized RBCs to bind MVECs and monocytes. Compared to parasitized Ξ±Ξ±/Ξ±Ξ± RBCs, we found that parasitized -Ξ±/Ξ±Ξ±, -Ξ±/-Ξ± and -/-Ξ± RBCs showed, respectively, 22%, 43% and 63% reductions in binding to MVECs and 13%, 33% and 63% reductions in binding to monocytes. Ξ±-Thalassemia was associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite's main cytoadherence ligand and virulence factor, on the surface of parasitized RBCs.Parasitized Ξ±-thalassemic RBCs show PfEMP1 display abnormalities that are reminiscent of those on the surface of parasitized sickle HbS and HbC RBCs. Our data suggest a model of malaria protection in which Ξ±-thalassemia ameliorates the pro-inflammatory effects of cytoadherence. Our findings also raise the possibility that other unstable hemoglobins such as HbE and unpaired Ξ±-globin chains (in the case of Ξ²-thalassemia) protect against life-threatening malaria by a similar mechanism

    Free Cysteine Modulates the Conformation of Human C/EBP Homologous Protein

    Get PDF
    The C/EBP Homologous Protein (CHOP) is a nuclear protein that is integral to the unfolded protein response culminating from endoplasmic reticulum stress. Previously, CHOP was shown to comprise extensive disordered regions and to self-associate in solution. In the current study, the intrinsically disordered nature of this protein was characterized further by comprehensive in silico analyses. Using circular dichroism, differential scanning calorimetry and nuclear magnetic resonance, we investigated the global conformation and secondary structure of CHOP and demonstrated, for the first time, that conformational changes in this protein can be induced by the free amino acid l-cysteine. Addition of l-cysteine caused a significant dose-dependent decrease in the protein helicity – dropping from 69.1% to 23.8% in the presence of 1 mM of l-cysteine – and a sequential transition to a more disordered state, unlike that caused by thermal denaturation. Furthermore, the presence of small amounts of free amino acid (80 Β΅M, an 8∢1 cysteine∢CHOP ratio) during CHOP thermal denaturation altered the molecular mechanism of its melting process, leading to a complex, multi-step transition. On the other hand, high levels (4 mM) of free l-cysteine seemed to cause a complete loss of rigid cooperatively melting structure. These results suggested a potential regulatory function of l-cysteine which may lead to changes in global conformation of CHOP in response to the cellular redox state and/or endoplasmic reticulum stress
    • …
    corecore