1,010 research outputs found

    Transmission characteristics of EM wave in a finite thickness plasma

    Get PDF
    One of the key factors for solving the problems of re-entry communication interruption is electromagnetic (EM) wave transmission characteristics in a plasma. Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state. The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L, collision frequency ν, electron density ne and wave working frequency f in a φ 800mm high temperature shock tube. In experiments, L is set to 4 cm and 38 cm. ν is 2 GHz and 15 GHz. ne is from 1×10^10 cm−3 to 1×10^13 cm−3, and f is set to 2, 5, 10, 14.6 GHz, respectively. Meanwhile, Wentzel–Kramers–Brillouin (WKB) and finite-difference time-domain (FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results. It is found that when L is much larger than EM wavelength λ (thick sheath) and ν is large, the theoretical result is in good agreement with experimental one, when sheath thickness L is much larger than λ, while ν is relatively small, two theoretical results are obviously different from the experimental ones. It means that the existing theoretical model can not fully describe the contribution of ν. Furthermore, when L and λ are of the same order of magnitude (thin sheath), the experimental result is much smaller than the theoretical values, which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Controllable Synthesis of Magnesium Oxysulfate Nanowires with Different Morphologies

    Get PDF
    One-dimensional magnesium oxysulfate 5Mg(OH)2 · MgSO4 · 3H2O (abbreviated as 513MOS) with high aspect ratio has attracted much attention because of its distinctive properties from those of the conventional bulk materials. 513MOS nanowires with different morphologies were formed by varying the mixing ways of MgSO4 · 7H2O and NH4OH solutions at room temperature followed by hydrothermal treatment of the slurries at 150 °C for 12 h with or without EDTA. 513MOS nanowires with a length of 20–60 μm and a diameter of 60–300 nm were prepared in the case of double injection (adding MgSO4 · 7H2O and NH4OH solutions simultaneously into water), compared with the 513MOS with a length of 20–30 μm and a diameter of 0.3–1.7 μm in the case of the single injection (adding MgSO4 · 7H2O solution into NH4OH solution). The presence of minor amount of EDTA in the single injection method led to the formation of 513MOS nanowires with a length of 100–200 μm, a diameter of 80–200 nm, and an aspect ratio of up to 1000. The analysis of the experimental results indicated that the hydrothermal solutions with a lower supersaturation were favorable for the preferential growth of 513MOS nanowires along b axis

    Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    Get PDF
    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices

    Acupoint Autohemotherapy Attenuates DNCB-Induced Atopic Dermatitis and Activates Regulatory T Cells in BALB/c Mice

    Get PDF
    Shi-Hua Yan,1,2 Yong Chen,3 Zhi-Qian Huang,1 Wen-Xi Zhong,1 Xiao-Tian Wang,1 Yang-Can Tang,1 Xu-Yi Zhao,1 Yu-Shan Wu,1 Chun Zhou,4 Wei Zhu,5 Wei Xiao,1,6 Xuan Li,2 Dong-Shu Zhang1,2 1School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China; 2Department of Traditional Chinese Medicine, The Tenth affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523058, People’s Republic of China; 3Department of Rheumatology and Immunology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China; 4School of Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China; 5Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, People’s Republic of China; 6Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of ChinaCorrespondence: Dong-Shu Zhang, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China, Email [email protected] Wei Xiao, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of China, Email [email protected]: Acupoint autohemotherapy (A-AHT) has been proposed as an alternative and complementary treatment for atopic dermatitis (AD), yet the exact role of its blood component in terms of therapeutic efficacy and mechanism of action is still largely unknown.Methods: This study aimed to evaluate the therapeutic efficacies and action mechanisms of intramuscular injections of autologous whole blood (AWB) and mouse immunoglobulin G (IgG) (autologous or heterologous) at acupoints on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse models. Serum levels of total immunoglobulin E (IgE), IgG, interleukin-10 (IL-10), and interferon-gamma (IFN-γ) were measured, as well as mRNA expression levels of Forkhead box P3 (FoxP3), IL-10 and IFN-γ in dorsal skin lesions, and IL-10+, IFN-γ+ and FoxP3+CD4+T cells in murine spleen.Results: It showed that repeated acupoint injection of AWB, autologous total IgG (purified from autologous blood in AD mice) or heterologous total IgG (purified from healthy blood in normal mice) effectively reduced the severity of AD symptoms and decreased epidermal and dermal thickness as well as mast cells in skin lesions. Additionally, AWB acupoint injection was found to upregulate FoxP3+, IL-10+ and IFN-γ+ CD4+T cells in murine spleen, suppressing the production of IgE antibodies and increasing that of IgG antibodies in the serum. Furthermore, both AWB and autologous total IgG administrations significantly elevated FoxP3 expression, mRNA levels of IL-10 and IFN-γ in dorsal skin lesions. However, acupoint injection of heterologous total IgG had no effect on regulatory T (Treg) and Th1 cells modulation.Conclusion: These findings suggest that the therapeutic effects of A-AHT on AD are mediated by IgG-induced activation of Treg cells.Keywords: autologous whole blood, acupoint injection, atopic dermatitis, anti-idiotypic immunomodulation, Treg

    β-defensin 2 as an Adjuvant Promotes Anti-Melanoma Immune Responses and Inhibits the Growth of Implanted Murine Melanoma In Vivo

    Get PDF
    β-defensin 2 is a small antimicrobial peptide of the innate immune system and has been thought to regulate anti-tumor immunity. However, little is known on whether β-defensin 2 could modulate melanoma-specific NK and T cell responses. In this study, we first cloned the murine β-defensin 2 gene by RT-PCR and generated the β-defensin 2 stably expressing B16 cells (B16-mBD2). Subsequently, we evaluated whether vaccination with irradiated B16-mBD2 could modulate the growth of implanted B16 cells and determined the potential mechanisms underlying the action of B16-mBD2 vaccine in modulating the growth of B16 tumors in C57BL/6. We found that vaccination with irradiated B16-mBD2, but not with control B16-p or parental B16, inhibited the development and progression of B16 tumors, and prolonged the survival of tumor-bearing mice. However, vaccination with irradiated B16-mBD2 failed to inhibit the development of B16 tumors in the CD4+- or CD8+-depleted recipients. Furthermore, vaccination with irradiated B16-mBD2 stimulated strong NK activity and promoted potent B16-specific CTL responses, accompanied by augmenting IFN-γ and IL-12, but not IL-4, responses in the recipient mice. Moreover, vaccination with irradiated B16-mBD2 promoted the infiltration of CD8+ and CD4+ T, NK cells and macrophages in the tumor tissues. These data suggest β-defensin 2 may act as a positive regulator, promoting anti-tumor NK and T cell responses in vivo. Therefore, β-defensin 2 may be used for the development of immunotherapy for the intervention of melanoma

    Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    Get PDF
    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific marker β-tubulin III, were dramatically increased at 7 days in the co-culture condition. Blocking the effects of brain-derived neurotrophic factor (BDNF) with an anti-BDNF antibody reduced the number of neurons differentiated from NSCs when co-cultured with protoplasmic astrocytes. In fact, the content of BDNF in the supernatant obtained from protoplasmic astrocytes and NSCs co-culture media was significantly greater than that from control media conditions. These results indicate that protoplasmic astrocytes promote neuronal differentiation of NSCs, which is driven, at least in part, by BDNF

    Cell Nucleus-Targeting Zwitterionic Carbon Dots

    Get PDF
    An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using beta-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.open
    corecore