374 research outputs found

    Field Emission Properties and Fabrication of CdS Nanotube Arrays

    Get PDF
    A large area arrays (ca. 40 cm2) of CdS nanotube on silicon wafer are successfully fabricated by the method of layer-by-layer deposition cycle. The wall thicknesses of CdS nanotubes are tuned by controlling the times of layer-by-layer deposition cycle. The field emission (FE) properties of CdS nanotube arrays are investigated for the first time. The arrays of CdS nanotube with thin wall exhibit better FE properties, a lower turn-on field, and a higher field enhancement factor than that of the arrays of CdS nanotube with thick wall, for which the ratio of length to the wall thickness of the CdS nanotubes have played an important role. With increasing the wall thickness of CdS nanotube, the enhancement factorβdecreases and the values of turn-on field and threshold field increase

    The Interaction between the First Transmembrane Domain and the Thumb of ASIC1a Is Critical for Its N-Glycosylation and Trafficking

    Get PDF
    Acid-sensing ion channel-1a (ASIC1a), the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1) and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacked the maturation of N-linked glycans through mid to late Golgi. These data suggest that disrupting the interaction between TM1 and thumb alters ASIC1a folding, impedes its glycosylation and reduces its trafficking. Moreover, reducing the culture temperature, an approach commonly used to facilitate protein folding, increased ASIC1a glycosylation, surface expression, current density and slowed the rate of desensitization. These results suggest that correct folding of extracellular ectodomain plays a critical role in ASIC1a biogenesis and function

    Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV).</p> <p>Materials/Methods</p> <p>Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology.</p> <p>Results</p> <p>Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney.</p> <p>Conclusion</p> <p>The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.</p

    Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China

    Get PDF
    The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28 were only recovered in one of the libraries. For AOB, only seven OTUs (based on 16S rRNA gene) and eight OTUs (based on amoA gene) were obtained, showing lower diversity than AOA. The qPCR results revealed that AOA amoA gene copy numbers ranged from 9.6 × 106 to 5.1 × 107 copies per gram of sediment and AOB amoA gene ranged from 9.5 × 104 to 6.2 × 105 copies per gram of sediment, indicating that the dominant ammonia-oxidizing microorganisms in the sediment of the Pearl River Estuary were AOA. The terminal restriction fragment length polymorphism results showed that the relative abundance of AOB species in the sediment samples of different salinity were significantly different, indicating that salinity might be a key factor shaping the AOB community composition

    αV Integrin Induces Multicellular Radioresistance in Human Nasopharyngeal Carcinoma via Activating SAPK/JNK Pathway

    Get PDF
    BACKGROUND:Tumor cells acquire the capacity of resistance to chemotherapy or radiotherapy via cell-matrix and cell-cell crosstalk. Integrins are the most important cell adhesion molecules, in which αV integrin mainly mediating the tight contact between tumor cells. METHODOLOGY/PRINCIPAL FINDINGS:To investigate the role of αV integrin in multi-cellular radioresistance (MCR) of human nasopharyngeal carcinoma (NPC), we performed immunohistochemistry and Western blotting to find that the expression of αV integrin in the tumor tissue of radioresistant patients is much higher than that in radiosensitive patients. In vitro, we cultured human NPC cell line CNE-2 cells as multi-cellular spheroids (MCSs) or as monolayer cells (MCs), and found that the expression of αV integrin in MCSs is significantly higher than that in MCs. MTT, flow cytometry and clonogenic survival assays showed that MCSs are less sensitive to X-ray irradiation than MCs while blocking of αV integrin in MCSs dramatically reversed their radioresistance. Furthermore, as detected by Western blotting, MCSs displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway in presence of irradiation. Blocking of αV integrin in MCSs decreased the expression of phosphorylated JNK. Additionally, blocking of SAPK/JNK signaling pathway synergistically induced apoptosis of MCSs exposed to irradiation by increasing the expression of cleaved caspase-3. In vivo, we found that irradiation combined with αV integrin blocking treatment significantly enhanced the radiosensitivity of NPC xenografts. CONCLUSIONS:Our results indicate a novel role of αV integrin in multi-cellular radioresistance of NPCs

    Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Get PDF
    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens

    Structural and Functional Analyses of Five Conserved Positively Charged Residues in the L1 and N-Terminal DNA Binding Motifs of Archaeal RadA Protein

    Get PDF
    RecA family proteins engage in an ATP-dependent DNA strand exchange reaction that includes a ssDNA nucleoprotein helical filament and a homologous dsDNA sequence. In spite of more than 20 years of efforts, the molecular mechanism of homology pairing and strand exchange is still not fully understood. Here we report a crystal structure of Sulfolobus solfataricus RadA overwound right-handed filament with three monomers per helical pitch. This structure reveals conformational details of the first ssDNA binding disordered loop (denoted L1 motif) and the dsDNA binding N-terminal domain (NTD). L1 and NTD together form an outwardly open palm structure on the outer surface of the helical filament. Inside this palm structure, five conserved basic amino acid residues (K27, K60, R117, R223 and R229) surround a 25 Å pocket that is wide enough to accommodate anionic ssDNA, dsDNA or both. Biochemical analyses demonstrate that these five positively charged residues are essential for DNA binding and for RadA-catalyzed D-loop formation. We suggest that the overwound right-handed RadA filament represents a functional conformation in the homology search and pairing reaction. A new structural model is proposed for the homologous interactions between a RadA-ssDNA nucleoprotein filament and its dsDNA target

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models
    corecore