23 research outputs found

    A Novel Neurotrophic Drug for Cognitive Enhancement and Alzheimer's Disease

    Get PDF
    Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD), the focus is the amyloid beta peptide (Aß) that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model

    Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain

    Get PDF
    Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of ch

    The Actin-Binding Protein Drebrin Inhibits Neointimal Hyperplasia

    No full text

    Actin-binding protein drebrin E is involved in junction dynamics during spermatogenesis

    No full text
    The actin-based cytoskeleton plays a critical role in the seminiferous epithelium during spermatogenesis by conferring cell shape, adhesion, structural support and cell polarity to both Sertoli and developing germ cells, which are essential for spermatogonial stem cell renewal, maintenance of the stem cell niche, cell cycle progression, mitosis, meiosis, spermiogenesis and spermiation. However, few functional studies are found in the literature, which explore the functional significance of actin dynamics in these events. This by and large is due to a lack of information on the proteins that regulate actin dynamics. Herein, we report drebrin E is an integrated component of the apical ectoplasmic specialization (apical ES) and the basal ES at the blood-testis barrier (BTB) in the seminiferous epithelium of the adult rat testis. Using immunohistochemistry and dual-labeled immunofluorescence analysis, drebrin E was found to display a stage-specific localization at the apical ES, as well as at the basal ES at the BTB during the seminiferous epithelial cycle of spermatogenesis. Drebrin E was first detected in stage V tubules at the basal ES with the highest expression at the BTB at stages V and VI, but it diminished considerably by stages VII and VIII and was almost non-detectable until stage IV. At the apical ES, drebrin E was also first detected at stage V, surrounding the entire head of the elongating spermatid, but by stage VI its localization had “shifted” to localize most intensely and almost exclusively to the concave side of the spermatid head. In stage VII tubules, drebrin E co-localized with actin, as well as with two other actin regulatory proteins Eps8 (epidermal growth factor receptor pathway substrate 8, an actin capping and bundling protein) and Arp3 (actin-related protein 3, a component of the Arp2/3 complex known to regulate actin nucleation and branching). The localization of drebrin E at the apical ES was compromised following treatment of rats with adjudin, which is known to exert its destructive effects primarily at the apical ES by inducing premature loss of elongating/elongated spermatids from the epithelium, mimicking “spermiation.” Instead of being restricted to the concave side of spermatid heads, drebrin E was found to be mis-localized in the seminiferous epithelium of adjudin-treated rats; it was also present on the convex side of elongating spermatids, but these cells were mis-oriented so that their heads no longer pointed toward the basement membrane. The expression of drebrin E by Sertoli cells was also found to be modulated by TGFβ3 and TNFα. Since Arp3, but not Eps8, was found to bind drebrin E; and cytokines were also shown to affect the cellular distribution of drebrin E and enhance the interaction between drebrin E and Arp3, these findings illustrate that cytokines may regulate BTB dynamics during the epithelial cycle by recruiting drebrin E and Arp3 to the BTB microenvironment to induce changes in the configuration of actin filament bundles at the basal ES. In summary, these findings illustrate drebrin E is working in concert with Arp3 to regulate actin filament bundles at both the apical and the basal ES in the testis, conferring adhesion and cell polarity at both sites during spermatogenesis

    The drebrin/EB3 pathway drives invasive activity in prostate cancer

    Get PDF
    Prostate cancer is the most common cancer in men and the metastatic form of the disease is incurable. We show here that the drebrin/EB3 pathway, which co-ordinates dynamic microtubule/actin filament interactions underlying cell shape changes in response to guidance cues, plays a role in prostate cancer cell invasion. Drebrin expression is restricted to basal epithelial cells in benign human prostate but is upregulated in luminal epithelial cells in foci of prostatic malignancy. Drebrin is also upregulated in human prostate cancer cell lines and co-localizes with actin filaments and dynamic microtubules in filopodia of pseudopods of invading cells under a chemotactic gradient of the chemokine CXCL12. Disruption of the drebrin/EB3 pathway using BTP2, a small molecule inhibitor of drebrin binding to actin filaments, reduced the invasion of prostate cancer cell lines in 3D in vitro assays. Furthermore, gain- or loss-of-function of drebrin or EB3 by over-expression or siRNA-mediated knockdown increases or decreases invasion of prostate cancer cell lines in 3D in vitro assays, respectively. Finally, expression of a dominant-negative construct that competes with EB3 binding to drebrin, also inhibited invasion of prostate cancer cell lines in 3D in vitro assays. Our findings show that co-ordination of dynamic microtubules and actin filaments by the drebrin/EB3 pathway drives prostate cancer cell invasion and is therefore implicated in disease progression

    Actin binding proteins and spermiogenesis: Some unexpected findings

    No full text
    Drebrin E, an actin-binding protein lacking intrinsic activity in the regulation of actin dynamics (e.g., polymerization, capping, nucleation, branching, cross-linking, bundling and severing), is known to recruit actin regulatory proteins to a specific cellular site. Herein, we critically evaluate recent findings in the field which illustrate that drebrin E works together with two other actin-binding proteins, namely Arp3 (actin-related protein 3, a component of the Arp2/3 complex that simultaneously controls actin nucleation for polymerization and branching of actin filaments) and Eps8 (epidermal growth factor receptor pathway substrate 8 that controls capping of the barbed ends of actin filaments, as well as actin filament bundling) to regulate the homeostasis of F-actin filament bundles at the ectoplasmic specialization (ES), a testis-specific atypical adherens junction (AJ) in the seminiferous epithelium. This is mediated by the strict temporal and spatial expression of these three actin-binding proteins at the apical and basal ES at the Sertoli cell-spermatid (step 8–19) and Sertoli-Sertoli cell interface, respectively, during the seminiferous epithelial cycle of spermatogenesis. In this Commentary, we put forth a possible model by which drebrin E may be acting as a platform upon which proteins (e.g., Arp3) that are needed to alter the conformation of actin filament bundles at the ES can be recruited to the site, thus facilitating changes in cell shape and cell position in the epithelium during spermiogenesis and spermiation. In short, drebrin E may be acting as a “logistic” distribution center to manage different regulatory proteins at the apical ES, thereby regulating the dynamics of actin filament bundles and modulating the plasticity of the apical ES. This would allow adhesion to be altered continuously throughout the epithelial cycle to accommodate spermatid movement in the seminiferous epithelium during spermiogenesis and spermiation. We also describe a hypothetical model, upon which functional studies can be designed in the future
    corecore