90 research outputs found

    New insight into kinetics behavor of the structural formation process in Agar gelation

    Full text link
    A time-resolved experimental study on the kinetics and relaxation of the structural formation process in gelling Agar-water solutions was carried out using our custom-built torsion resonator. The study was based on measurements of three naturally cooled solutions with agar concentrations of 0.75%, 1.0% and 2.0% w/w. It was found that the natural-cooling agar gelation process could be divided into three stages, sol stage (Stage I), gelation zone (Stage II) and gel stage (Stage III), based on the time/temperature evolutions of the structural development rate (SDR). An interesting fluctuant decaying behavior of SDR was observed in Stage II and III, indicative of a sum of multiple relaxation processes and well described by a multiple-order Gaussisn-like equation: . More interestingly, the temperature dependences of the fitted values of Wn in Stage II and Stage III were found to follow the different Arrhenius laws, with different activation energies of EaII= 39-74 KJ/mol and EaIII~7.0 KJ/mol. The two different Arrhenius-like behaviors respectively suggest that dispersions in Stage II be attributed to the relaxation of the self-assembly of agar molecules or the growth of junction zones en route to gelation, in which the formation or fission of hydrogen bonding interactions plays an important role; and that dispersions in Stage III be attributed to the relaxation dynamics of water released from various size domains close to the domain of the viscous flow of water during the syneresis process.Comment: 24 pages, 4 figures, 1 tabl

    Extremely Low Genetic Diversity Indicating the Endangered Status of Ranodon sibiricus (Amphibia: Caudata) and Implications for Phylogeography

    Get PDF
    Background: The Siberian salamander (Ranodon sibiricus), distributed in geographically isolated areas of Central Asia, is an ideal alpine species for studies of conservation and phylogeography. However, there are few data regarding the genetic diversity in R. sibiricus populations. Methodology/Principal Findings: We used two genetic markers (mtDNA and microsatellites) to survey all six populations of R. sibiricus in China. Both of the markers revealed extreme genetic uniformity among these populations. There were only three haplotypes in the mtDNA, and the overall nucleotide diversity in the mtDNA was 0.00064, ranging from 0.00000 to 0.00091 for the six populations. Although we recovered 70 sequences containing microsatellite repeats, there were only two loci that displayed polymorphism. We used the approximate Bayesian computation (ABC) method to study the demographic history of the populations. This analysis suggested that the extant populations diverged from the ancestral population approximately 120 years ago and that the historical population size was much larger than the present population size; i.e., R. sibiricus has experienced dramatic population declines. Conclusion/Significance: Our findings suggest that the genetic diversity in the R. sibiricus populations is the lowest among all investigated amphibians. We conclude that the isolation of R. sibiricus populations occurred recently and was a result of recent human activity and/or climatic changes. The Pleistocene glaciation oscillations may have facilitated intraspecie

    X-ray diffraction study of GaAs/InAs/GaAs ultrathin single quantum well

    No full text
    Ultrathin single quantum well (about one monolayer) grown on GaAs(001) substrate with GaAs cap layer has been studied by high resolution x-ray diffractometer on a beamline of the Beijing Synchrotron Radiation Facility. The interference fringes on both sides of the GaAs(004) Bragg peak are asymmetric and a range of weak fringes in the higher angle side of the Bragg peak is observed. The simulated results by using the kinematical diffraction method shows that the weak fringe range appears in the higher angle side when the phase shift introduced by the single quantum well is very slightly smaller than m pi (m:integer), and vice versa. After introducing a reasonable model of single quantum well, the simulated pattern is in good agreement with the experiment. (C) 1996 American Institute of Physics

    Study of double barrier superlattice by synchrotron radiation and double-crystal x-ray diffraction

    No full text
    An (A1As/GaAs/A1As/A1GaAs)/GaAs(001) double-barrier superlattice grown by molecular beam epitaxy (MBE) is studied by combining synchrotron radiation and double-crystal x-ray diffraction (DCD). The intensity of satellite peaks is modulated by the wave function of each sublayer in one superlattice period. Simulated by the x-ray dynamical diffraction theory, it is discovered that the intensity of the satellite peaks situated near the modulating wave node point of each sublayer is very sensitive to the variation of the layer structural parameters, The accurate layer thickness of each sublayer is obtained with an error less than 1 Angstrom. Furthermore, x-ray kinematical diffraction theory is used to explain the modulation phenomenon. (C) 1996 American Institute of Physics
    corecore