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Abstract Discrete time Markov decision process is studied and the minimum reward risk
model is established for the reservoir long-term generation optimization. Different form the
commonly used optimization criterion of best expected reward in reservoir scheduling, the
probability that the expected generation of the whole period not exceeding the predete reward
target to be smallest is chosen as the optimizing target for this random process. For the
hydropower tends to operate as peak-clipping mode in Market-based model to gain more
profits, the function of electricity price and output can be founded by analyzing on the typical
day load course of the electricity system. Compared with the generally used criteria of the
largest expectation power generation model, this model is fitted for the decision-making in
which the risk is needed to be limited to reflect the risk preference of the policy makers.
Stochastic dynamic programming method is adopted to solve the model and the model is
tested on the Three Gorges Hydropower Station.

Keywords Markov decision process .Minimum risk criteria . Peak-clipping operationmode .

The optimal scheduling strategy . Risk preference

Because of the uncertainty of the inflow runoff, reservoir operation is a random process.
Best expected reward is a commonly used optimization criterion in reservoir scheduling,
related literatures see (Zhang 1987; Wang et al. 2002b, 2014; Zhang et al. 2006, 2007;
Chang et al. 2005; Ahmad et al. 2014). However, this criterion is insensitive on risk, a
strategy maximizing the random variable of expected reward may cause it to get a lower
value on an unacceptable probability. The criterion is not appropriate to optimization
problems which need some directly reflection or restriction of risks. For the scheduling
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optimization of hydropower station, in order to guaranteeing a certain level of hydropower
reward, the scheduling strategy should make the total annual expected hydropower reward
as large as possible, meanwhile, it demands the probability that the actual reward lower
than a predetermined value should not be greater than a given level. Thus, only taking the
expected reward as optimization target is not enough, other optimization criterion is
necessary to be chosen to reflect risk of the practical problems and satisfy the decision
maker’s will or risk appetite.

This paper presents a minimum reward risk model in reservoir optimization scheduling.
According to this model, risk probability is employed as the optimization target to seek for the
optimum scheduling strategy. The specific principle of this model can be described as: for the
predetermined level of total hydropower profit during scheduling period, the optimum control
strategy of reservoir scheduling is seek to minimize the risk probability that the expected
generation reward lower than the predetermined value. With the help of this model, the
decision makers can select different control policies according to their risk tolerance and
preference freely.

1 Markov Decision Process

This paper focus on the study of discrete-time, non-time-homogeneous Markov decision
model (Liu 2004), which has the following structure:

St;At; pt;Rtð Þ t ¼ 0; ::::::; T ð1Þ
where St is the system state set within period t; At ¼

[
i∈St

At ið Þ is the action set. For some

state i ∈ St, a set At(i) of allowable actions during the t period can be taken;
pt={pij

a, i∈St, j∈St + 1,a∈At(i)} is a system state situation transition probability matrix which
satisfies ∑

j∈Stþ1

pai j ¼ 1; Function Rt= {Rt (⋅|i, a, j)} is adopt as the reward distribution and

satisfying R([M1,M2]|i,a, j) = 1, where constants M1,M2 denote the upper and lower bound
of reward respectively.

Model (1) describes a stochastic decision making process at each discrete time t=0,......,T.
Variables it,at,bt mean the system state, action-taken and period reward at time t respectively.
System operation can be described as follows: supposing the system is in state it= i at time t,
taking an action at= a∈At(i), then:

(1) the system transfers to the next state it + 1 = j with probability pij
a, which meaning

Prob(it + 1 = j|it = i, at = a) = pij
a;

(2) Obtain the period reward rt, which is a random variable obeying R(⋅|i, a, j) probability
distribution.

Once the system transferred to a new State, it will take new actions and thus developing
continuously.

π={at, t=1…T} is defined as a control sequence composed of action set which satisfy
at∈At(i), t=1....T. A Markov decision process is determined by a special action sequence π
and the initial state i1 = i. rt(i,a, j) is called the reward function for replacing the Rt(⋅|i, a, j) if
Rt(⋅ |i, a, j); i ∈ St, j ∈ St + 1, a ∈ At(i) follows degenerating distribution and meets
Rt({rt(i,a, j)}|i,a, j) = 1. rt(i, a, j) is the function of i,a, j.
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2 Minimum Reward Risk Model based on Markov Decision Process

Taking variable Bπ
T ¼ ∑

T

t¼1
rt as the total expected reward produced by applying strategy π.

2.1 Minimum Risk Model

For a given case including constants of predetermined reward x, the number of T stages and the
initial state i1 of the system, decision control target is to achieve minimal risk probability that
the total expected reward lower than the predetermined reward at the end of stage T. Let π∈∏
and seeking policy π* as:

Prob Bπ*
T ≤x i1 ¼ ij

� �
¼ inf

π∈Π
Prob Bπ

T ≤x i1 ¼ ij� �� �
; ∀i∈S 1 ð2Þ

Where it, xt, at, et= (it, xt), rt are system state, target reward value, action-taken, decision state
and the obtained stage reward respective. π* is the optimal scheduling strategy, Π is a set of
decision sequences which are called decision sequence space.

2.2 Objective Function and Optimal Value Function

Taking formula

Fπ
T i; xð Þ ¼ Probπ BT ≤x e1 ¼ i; xð Þjð Þ; i; xð Þ∈E; T ≥1 ð3Þ

as the objective function resulted by the strategy π where E is the decision state set. Thus, the
formula

F*
T i; xð Þ ¼ inf

π∈∏
Fπ
T i; xð Þ� �

; i; xð Þ∈E; T ≥1 ð4Þ

is the optimal value function of the minimum risk model. Supposing a control sequence π*∈Π
subject to Fπ*

T i; xð Þ ¼ F*
T i; xð Þ; ∀ i; xð Þ∈E , π* is the optimal scheduling strategy during stage T.

3 Solution Algorithm of Minimum Risk Model

Supposing the finite set W={r1, r2, r3......., rm}, r1 < r2 <…< rm satisfies Rt(W|i,a, j) = 1, i∈St; j
∈Stþ1; a∈At ið Þ ; t ¼ 1:::::T , let pijr

a = pij
aRt({r}|i, a, j). Inverse timing recursive algorithm is

adopted to solve the model.

3.1 Dynamic Recursive Equation of Remaining Profit Risk Function

Taking

F*
t i; xð Þ ¼ min

a∈At ið Þ

X
j∈Stþ1

X
r∈W

pai jr F
*
tþ1 j; x−rð Þ

( )
; i∈St; a ∈ At ið Þ ð5Þ

as the dynamic recursive equation of remaining profit risk function with boundary condition:

F*
T i; xð Þ ¼ I 0;þ∞½ � xð Þ:
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Let I[0,+∞](x) be the characteristic function of set [0, +∞], which means

I 0;þ∞½ Þ xð Þ ¼ 1 0≤x < þ∞
0 x < 0

�
ð6Þ

Denoting:

bt i; x; að Þ ¼
X
j∈Stþ1

X
r∈W

pai jr F
*
tþ1 j; x−rð Þ ð7Þ

I t i; xð Þ ¼ min
a∈At ið Þ

bt i; x; að Þf g ð8Þ

where bt(i, x, a) denotes the system probability that the total reward lower than x in stage
t from current to the end of scheduling period, when system is in state i for target x,
taking action a. It(i, x) is the minimum expected probability taking the optimal action in
period t.

3.2 Inverse Time Sequence Recursion Process

Based on the stochastic dynamic programming principle, the recursive optimization process
include following three steps complying with Inverse time sequence (Askew 1974).

Step 1
This step is for the last period of decision-making.
The relevant variable values can be calculated by the following formula

bT−1 i; rk ; að Þ ¼
X
j∈ST

X
r ≤ rK

pai jr ; i∈ ST−1 ; a∈ AT−1 ið Þ ð9Þ

IT−1 i; rkð Þ ¼ min
a∈AT−1 ið Þ

bT−1 i; rk ; að Þf g; i∈ST−1 ð10Þ

A*
T−1 i; rkð Þ ¼ a a∈ AT−1 ið Þ;j bT−1 i; rk ; að Þ ¼ IT−1 i; rkð Þf g ð11Þ

For the formula (11), which means that there perhaps to be more than on decisions can
achieve the same minimum risk value. One of them is enough of course. Here variable
gT − 1(i, rk) is used as the optimal decision action for the last period.

gT−1 i; rkð Þ∈ A*
T−1 i; rkð Þ; k ¼ 1; 2::::::m−1; gT−1 i; rmð Þ ∈AT−1 ið Þ ð12Þ

Variable r means the current period generating profit, which is divided into m score
ascending.
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Second, during the actual scheduling decision-making time for the predetermined
generation profit x and system state i, following formula can be adopted to decide the
optimal decision action and its corresponding minimum risk probability.

F*
T−1 i; xð Þ ¼

0; x < r1;
IT−1 i; rkð Þ; rk ≤x < rkþ1; k ¼ 1…m−1
1 x≥rm

8<
: ð13Þ

A*
T−1 i; xð Þ ¼ AT−1 ið Þ x < r1; x≥rm

A*
T−1 i; rkð Þ rk ≤x < rkþ1; k ¼ 1…m−1

�
ð14Þ

gT−1 i; xð Þ ¼ gT−1 i; rmð Þ; x < r1 or x≥rm
gT−1 i; rkð Þ; xk ≤x < rkþ1; k ¼ 1::::m−1:

�
ð15Þ

Step 2
Supposing Ft

*(i, x)(∀ i ∈ St)、At
*、gt have been obtained for some period t. The

predetermined generation profit variable X from current t period to the scheduling end
is divided into M score as x1 < x2 <…< xM. Following is the special recursive calculation
method to achieve the optimal scheduling action and the corresponding minimum risk
probability for period t−1.

Form period t− 1 to the scheduling end, the predetermined generation profit
variable can be expressed as xk + rh, where k= 1, 2.....,M, h = 1, 2....,m. Variable U
can be taken as this predetermined generation profit. Hence for any transferring
state j form period t− 1 to t,

j ∈ St; r∈W ; F*
t j; x−rð Þ ¼

0 x < u1
F*
t j; uk−rð Þ uk ≤x < ukþ1; 1≤k < N

1 x≥uN

8<
: ð16Þ

Then, the special optimal scheduling action and the corresponding minimum
risk probability for period t− 1 can be calculate as:

bt−1 i; uk ; að Þ ¼
X
j ∈ St

X
r∈W

pai jr F
*
t j; uk−rð Þ; i∈ St−1; a∈ At−1 ið Þ ð17Þ

I t−1 i; ukð Þ ¼ min
a∈ At−1 ið Þ

bt−1 i; uk ; að Þf g; i∈St−1 ð18Þ

A*
t−1 i; ukð Þ ¼ aja∈ At−1 ið Þ; bt−1 i; uk ; að Þ ¼ I t−1 i; ukð Þf g; i∈St−1 ð19Þ

Choose gt − 1(i, uk) ∈At − 1
* (i, uk), k= 1,......,N − 1, gt − 1(i, uN) ∈At − 1(i) as the t− 1 period

optimal scheduling action.
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As similar as the step 1, for a given predetermined generation profit x and system
state i, the corresponding optimization decision for period t− 1 can be achieve as
follows:

F*
t−1 i; xð Þ ¼

0 x < u1
I t−1 i; ukð Þ; uk ≤x < ukþ1; k ¼ 1; ::::N−1;
1 x≥uN

8<
: ð20Þ

or

or

Step 3
If t− 1>0, replacing t by t− 1 in step 2 and return to step 2. If t−1=0, the iteration

stop. From the steps above, the optimal value function F0
* and the best policy

π*={g0,g1,.... gT) can be calculated for the whole scheduling period T.

4 Application of Minimum Risk Model in Hydropower Optimal Scheduling

For the reservoir mid-long term optimized operation system, the whole scheduling period is often
1 year and is divided into several periods by a month or 10 days, related literatures see (Wang et
al. 2002b; Huang and Wu 1993; Jahandideh-Tehrani and Bozorg Haddad 2015; Liu et al. 2006;
Xie et al. 2012) The reservoir storage level and period of runoff composed of the system state
variables (Zt,Qt), t=0,....T. VariableX is the predetermined generation profit and (Zt,Qt,X) being
the decision state. Reservoir outflow Ut is the decision variable. The period generation reward rt
is the product of generation output Nt and electricity price pt, rt=ptNt. In this study, period
electricity price rt is assumed as a function of output Nt, pt ¼ pt N tð Þ ; t ¼ 0; ::::N .

Usually, to obtain greater generation benefit, the hydropower tends to peak cutting operate
basis on electricity market mode. Therefore, the relationship between Nt and pt can be
determined by analyzing of the typical daily load curve of the power system.

4.1 Mathematical Model

① Dynamic recursive equation of remaining profit risk function

F*
t i; xð Þ ¼ min

ut

X
j∈Stþ1;r∈W

puti jr F
*
tþ1 j; x−rtð Þ

( )
i∈ St ¼ Zt � Qtð Þ ð23Þ

With boundary condition: FT
* (i, x) = I[0,+∞](x).

rt(zt,qt,ut) is the generating profit function of the t scheduling period, which depends
on the factors of actual output, penalty terms and the electricity price, rt=pt× (Nt+
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min{0,α(Nt−Nf)}). Nf is the firm power and α the penalty coefficient, which can be
calculated by using of iterative trial method to meet the requirement of given guarantee
rate (Wang et al. 2002b).

② Constraint condition:

a. State transition equation of water storage: Vt + 1 =Vt+ (Qt−Ut)Δt;
b. Outflow process constraint: Ut ≤Ut ≤Ut;
c. Reservoir storage process constraint: Vdeath≤V t ≤V t

d. Guarantee rate constraint: p(Nt>Nf)≥pf
③ Function of period reward price and generation output

Under the mode of power market-based, price, discharge and water head are three
variable factors influencing the operation of hydropower plant. Generator capacity price
related to its operating position in the system load chart: peak load electricity price is the
highest while valley load price lowest. Due to hydropower’s premium performance of
peak regulation and frequency modulation, the hydropower tends to peak cutting operate
to get greater profit in actual operation. With increasing in work hours, the average
electricity price is reduced as hydropower operating position moves down in the system
load chart. Therefore, based on the reasonable assumption that hydropower tends to peak
cutting operate, how to determine the functional relationship between hydropower
duration and average price is the key of establishing the functional relationship of average
period price and the output.

This paper analyzes typical daily load process of power system for each period to
determine the functional relationship p= p(t) of average electricity price p and work
duration t, which consists of the following steps. Although this paper study mid-
long term optimized operation system for hydropower stations and the period is
month, the special daily running is supposed as following peak cutting operation
principle. That is to say: power demand in peak load period should always be met
first whenever in dry seasons or wet seasons; and if water quantity is rich, operating
position may move down to base load on condition of target of the maximum
hydropower profit.

a. Select typical daily load curve of the power system during each scheduling period t,
the values between the minimum and maximum of the load curve are discretized from
high to low. once the curve according to duration time has been drawn again, the
curve of load P and duration t is obtained, as show in Fig. 1;

t pmax

Pmax

Pmin

024
pmin p

Fig. 1 Curve of output-price and
curve of load-cumulative duration
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b. Suppose the maximum load price pmax and the minimum load price pmin. Make linear
interpolation due to load sizes and get corresponding price dpi at every discrete load
points dPi;

c. When
∑dPidpiΔt
∑dPiΔt ¼ �pt, the iteration stops; where pt is the average electricity price in

period t based on historical price data;
d. According to the determined value pmax、pmin and make linear interpolation due to the

load size, determine relationship curve of load P and price p(P), as described in Fig. 1;
e. According to Fig. 1, draw relationship curve p(t) ~ t of duration and price, as shown in

Fig. 2.
Supposing average output of hydropower plant of current period is Nt and the

capacity of hydropower plant is N0, the daily minimum work hours are t =Nt/N0 . The
average electricity price corresponding to output Nt can be calculated through inter-
polation of the curve p(t) ~ t.

④ Convergence Condition
Inverse timing recursion begin from Tth period at the end of the hydrological cycle

until to the 0th beginning period . The first loop is completed, which can be expressed as
FT
(1)→F0

(1), let FT
(2) =F0

(1); then continue the second loop FT
(2)→F0

(2) and the kth loop

FT
(k)→F0

(k) in sequence. Under the appropriate condition, lim
k→∞

F kð Þ
0 −F kð Þ

T

� �
¼ const will

appear and the stable policy is gained. Then the loop stops (Wang et al. 2002a).
In figures above, where the unit of variable t is hour, output P is WM, price p is Yuan/

WM。

5 Case Application

The China’s three gorges hydropower station is selected as a case study, the minimum reward
risk model in mid-long term optimized operation system is proposed. Because mature elec-
tricity markets have not been established in china, the price data of market is not available. But
author considers a reasonable estimation that the electricity price can be obtained by analyzing
the actual operation of the power system and hydropower plant. For three gorges hydropower
plant, we assume its average period price is 0.25 Yuan/KW.h. As supplement and perfection to

t24

pmax

pmin

Fig. 2 Curve of price-cumulative
duration
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the original model, the optimal target changes into the maximum electricity reward when the
given risk of electricity reward is 0 or 1.

Discrete the state variables: both the discrete number of reservoir storage level and runoff
are 10, the expected value of generation has a descending discretization number
of 10� 12−tð Þ t ¼ 0; :::11 . Points of the first scheduling period is 120 with range
[0,12P] and points in the last period is 10 with range [0, P]. P denotes total capacity of the
three gorges hydropower station, P= 18,200 MW.

Through correlation regression analysis of the historical measured runoff data, we establish
seasonal AR(1)model which accord with Markov process. Transition matrix of runoff condi-
tional probability is calculated by massive simulated series. Due to space limitation, detailed
description has not been put here.

Through inverse timing iterative calculation and for each discrete decision points
(Zt,Qt,Xt), the statistical parameters of release policy during optimal period, expected gener-
ation reward and expected guarantee rate and so on is determined by applying of the minimum
reward risk model while the model converges.

For a special decision state in current period given as et= (z, q, x)t, scheduling policy in
current state can be adopted by interpolation according to generated policies with discrete
decision state. Decision state is three dimensional vector, therefore it belongs to 3D-interpo-
lation. The steps are as follows:

① Determine position of decision states, where zi≤ z< zi + 1, qj≤q< qj + 1, xk≤ x< xk + 1;
② Fixed z、q, x is calculated by using linear interpolation:

According to the optimal risk values corresponding to (zi,qj, xk) and (zi,qj, xk + 1), risk
value of (zi, qj, x) can be determined by interpolating; in the same way, the optimal risk
values of the following discrete state points (zi,qj + 1, x), (zi + 1,qj, x), (zi + 1,qj, x), (zi +
1,qj, x) can be determined successively.
③ Fixed z, x, q is determined by using linear interpolation:

According to risk values corresponding to generated discrete state points (zi, qj, x) and
(zi,qj + 1, x), the risk value corresponding to (zi,q, x) can be obtained by interpolating; so
the risk value corresponding to (zi + 1,q, x) can be calculated;
④Fixed q、x, z is determined by using linear interpolation:

According to risk values corresponding to generated points (zi,q, x) and (zi + 1,q, x), the
risk value corresponding to (z,q, x) can be determined.

Table 1 Statistical table of part of the calculation results

Water
level(m)

Discharge
(m3/s)

Pre reward
(billion Yuan)

Risk rate Decision
discharge (m3/s)

Expected reward
(billion Yuan)

Expected
guarantee
rate (%)

145 12,656 152.9 0.000002 12,656 214.9 82.1

207.5 0.21 12,656 214.9 79.3

214.8 0.35 12,656 215.8 79.0

229.3 0.65 12,656 215.8 79.6

236.6 0.83 12,656 215.8 79.9

247.5 0.97 12,656 215.8 80.2

265.7 1.0 12,656 215.8 82.0
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For the Three Gorges Hydropower Station, part of the calculation results statistically as
shown in Table 1 when scheduling period starts from early June with the first period water
level 145 m and discharge 12,656 m3/s.

6 Conclusions

Different from the conventional power generation optimization criterion of best expected
reward, a minimum decision risk model is developed to generate reservoir scheduling plan,
which is the most significant innovation in reservoir scheduling. Event risk probability is put to
be the optimal target and optimal control strategy is sought by stochastic dynamic program-
ming method. With the advantage of this model, decision makers have the chance to select
different control policies according to their risk tolerance and preference.

Under market mode, this scheduling model is more appropriate to operators and management
staff of hydropower stationwho canmake scheduling policy to reflecting their own risk preference
according to actual anti-risk abilities of company finance and of reservoir characteristics and so on.
Generally speaking, companies with abundant capital power and reservoirs possess good regula-
tion performance have strong ability to resist risk and tend to select the scheduling policies of high
income with high risks, vice versa. This will increase the decision flexibility for decision to make
the operation of hydropower stations closer to their companies’ reality.
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