237 research outputs found

    Multifunctional graphene woven fabrics

    Get PDF
    Tailoring and assembling graphene into functional macrostructures with well-defined configuration are key for many promising applications. We report on a graphene-based woven fabric (GWF) prepared by interlacing two sets of graphene micron-ribbons where the ribbons pass each other essentially at right angles. By using a woven copper mesh as the template, the GWF grown from chemical vapour deposition retains the network configuration of the copper mesh. Embedded into polymer matrices, it has significant flexibility and strength gains compared with CVD grown graphene films. The GWFs display both good dimensional stability in both the warp and the weft directions and the combination of film transparency and conductivity could be optimized by tuning the ribbon packing density. The GWF creates a platform to integrate a large variety of applications, e.g., composites, strain sensors and solar cells, by taking advantages of the special structure and properties of graphene

    IL-6-174 G/C and -572 C/G Polymorphisms and Risk of Alzheimer’s Disease

    Get PDF
    Associations between interleukin 6 (IL-6) polymorphisms and Alzheimer’s disease (AD) remain controversial and ambiguous. The aim of this meta-analysis is to explore more precise estimations for the relationship between IL-6-174 G/C and -572 C/G polymorphisms and risk for AD. Electronic searches for all publications in databases PubMed and EMBASE were conducted on the associations between IL-6 polymorphisms and risk for AD until January 2012. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated using fixed and random effects models. Twenty-seven studies were included with a total of 19,135 individuals, involving 6,632 AD patients and 12,503 controls. For IL-6-174 G/C polymorphism, the combined results showed significant differences in recessive model (CC vs. CG+GG: OR = 0.65, 95%CI = 0.52–0.82). As regards IL-6-572 C/G polymorphism, significant associations were shown in dominant model (CG+GG vs. CC: OR  = 0.73, 95% CI = 0.62–0.86) and in additive model (GG vs. CC, OR  = 0.66, 95% CI = 0.46–0.96). In conclusion, genotype CC of IL-6-174 G/C and genotype GG plus GC of IL-6-572 C/G could decrease the risk of AD

    One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    Get PDF
    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan

    Synthesis and Characterization of ZnO Nanorods and Nanodisks from Zinc Chloride Aqueous Solution

    Get PDF
    ZnO nanorods and nanodisks were synthesized by solution process using zinc chloride as starting material. The morphology of ZnO crystal changed greatly depending on the concentrations of Zn2+ion and ethylene glycohol (EG) additive in the solution. The effect of thermal treatment on the morphology was investigated. Photocatalytic activities of plate-like Zn5(OH)8Cl2 · H2O and rod-like ZnO were characterized. About 18% of 1 ppm NO could be continuously removed by ZnO particles under UV light irradiation

    Association between HLA-DRB1 alleles polymorphism and hepatocellular carcinoma: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HLA-DRB1 allele polymorphisms have been reported to be associated with hepatocellular carcinoma susceptibility, but the results of these previous studies have been inconsistent. The purpose of the present study was to explore whether specific HLA-DRB1 alleles (DRB1*07, DRB1*12, DRB1*15) confer susceptibility to hepatocellular carcinoma.</p> <p>Methods</p> <p>Case-control studies on HLA-DRB1 alleles association with HCC were searched up to January 2010 through a systematic review of the literature. The odds ratios (ORs) of HLA-DRB1 allele distributions in patients with hepatocellular carcinoma were analyzed against healthy controls. The meta-analysis software REVMAN 5.0 was applied for investigating heterogeneity among individual studies and for summarizing all the studies. Meta-analysis was performed using fixed-effect or random-effect methods, depending on absence or presence of significant heterogeneity.</p> <p>Results</p> <p>Eight case-control studies were included in the final analysis. Among the 3 HLA-DRB1 alleles studied, DRB1*07 and DRB1*12 were significantly associated with the risk of HCC in the whole populations (OR = 1.65, 95% CI: 1.08-2.51, P = 0.02 and OR = 1.59, 95% CI: 1.09-2.32, P = 0.02, respectively). No significant association was established for DRB1*15 allele with HCC in the whole populations. Subgroup analysis by ethnicity showed that DRB1*07, DRB1*12 and DRB1*15 alleles significantly increased the risk of hepatocellular carcinoma in Asians (OR = 2.10, 95% CI: 1.06-4.14, P = 0.03; OR = 1.73, 95% CI: 1.17-2.57, P = 0.006 and <b><it>OR </it></b>= 2.88, <it><b>95%CI: 1</b></it>.77-4.69, P <<it><b>0.001</b></it>, respectively).</p> <p>Conclusion</p> <p>These results support the hypothesis that specific HLA-DRB1 alleles might influence the susceptibility of hepatocellular carcinoma. Large, multi-ethnic confirmatory and well designed studies are needed to determine the host genetic determinants of hepatocellular carcinoma.</p

    Computational Modeling and Analysis of Insulin Induced Eukaryotic Translation Initiation

    Get PDF
    Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow

    Clinical research evidence of cupping therapy in China: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though cupping therapy has been used in China for thousands of years, there has been no systematic summary of clinical research on it.</p> <p>This review is to evaluate the therapeutic effect of cupping therapy using evidence-based approach based on all available clinical studies.</p> <p>Methods</p> <p>We included all clinical studies on cupping therapy for all kinds of diseases. We searched six electronic databases, all searches ended in December 2008. We extracted data on the type of cupping and type of diseases treated.</p> <p>Results</p> <p>550 clinical studies were identified published between 1959 and 2008, including 73 randomized controlled trials (RCTs), 22 clinical controlled trials, 373 case series, and 82 case reports. Number of RCTs obviously increased during past decades, but the quality of the RCTs was generally poor according to the risk of bias of the Cochrane standard for important outcome within each trials. The diseases in which cupping was commonly employed included pain conditions, herpes zoster, cough or asthma, etc. Wet cupping was used in majority studies, followed by retained cupping, moving cupping, medicinal cupping, etc. 38 studies used combination of two types of cupping therapies. No serious adverse effects were reported in the studies.</p> <p>Conclusions</p> <p>According to the above results, quality and quantity of RCTs on cupping therapy appears to be improved during the past 50 years in China, and majority of studies show potential benefit on pain conditions, herpes zoster and other diseases. However, further rigorous designed trials in relevant conditions are warranted to support their use in practice.</p

    Spinal CX3CL1/CX3CR1 may not directly participate in the development of morphine tolerance in rats

    Get PDF
    CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly
    corecore