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Abstract
In this paper we consider a class of second-order neutral functional differential
equations. Under certain conditions, we establish the existence of multiple periodic
solutions by means of Z2 group index theory and variational methods. The main
result is also illustrated with an example.
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1 Introduction
In this paper we consider a class of second-order neutral functional differential equations
described by

⎧
⎨

⎩

(p(t)u′(t – sτ ))′ – q(t)u(t – sτ ) + λf (t, u(t), u(t – τ ), . . . , u(t – sτ )) = ,

u() – u(kτ ) = u′() – u′(kτ ) = ,
(.)

where p ∈ C([, τ ],R+), q ∈ C([, τ ],R+) and they are τ -periodic. f ∈ C(R(s+),R), λ ∈ R,
and τ > . k and s are given positive integers with k > s. A function u ∈ C(R,R) is a solution
of system (.) if the function u satisfies (.).

The necessity to study delay differential equations is due to the fact that these equations
are useful mathematical tools in modeling many real processes and phenomena studied
in economics, biology, electronics, optimal control, mechanics, medicine, etc. [, ].

In recent years many researchers have focused on the existence of periodic solutions
of delay differential equations; see, for example, [–]. Several available approaches to
tackle the existence of periodic solutions for delay differential equations include the dual
Lyapunov method, the Fourier analysis method, fixed point theory, and the coincidence
degree theory [–]. Recently, some researchers have studied the existence of periodic
solutions for delay differential equations via variational methods [–].

When p(t) = q(t) =  and s = , system (.) reduces to the following equation:

⎧
⎨

⎩

u′′(t – τ ) – u(t – τ ) + λf (t, u(t), u(t – τ ), u(t – τ )) = ,

u() – u(kτ ) = u′() – u′(kτ ) = .
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In [], Shu and Xu obtained the following result.

Theorem A Assume that the following conditions are satisfied.

(H) ∂f (t,u,u,u)
∂t �= .

(H) There exists a function F(t, u, u) ∈ C(R,R) such that

∂F(t, u, u)
∂u

+
∂F(t, u, u)

∂u
= f (t, u, u, u).

(H) F(t, u, u) is τ -periodic in t.
(H) F satisfies F(t, –u, –u) = F(t, u, u) and f (t, –u, –u, –u) = –f (t, u, u, u).
(H) F(t, u, u) =  if and only if (u, u) = ,∀t ∈ [, τ ].
(H) lim|u|→

F(t,u,u)
|u| = , where |u| = (|u| + |u|) 

 , t ∈ [, τ ].
(H) There exists a constant α >  such that when |u| + |u| > α, F(t, u, u) < , t ∈

[, τ ].

Moreover, if there exists an integer m >  such that λ satisfies

λ >
m(π + kτ )

kτ  , (.)

then the system

⎧
⎨

⎩

u′′(t – τ ) – u(t – τ ) + λf (t, u(t), u(t – τ ), u(t – τ )) = ,

u() – u(kτ ) = u′() – u′(kτ ) = ,
(.)

possesses at least m non-zero solutions with the period kτ .

Remark . Based on our analysis, (.) should be replaced by

λ >
m(π + kτ )

kτ  .

Compared to system (.), the neutral functional differential system (.) admits four
control parameters p, q,λ, s. We aim to derive conditions in terms of these four control
parameters for the existence and multiplicity of periodic solutions of a class of second-
order neutral functional differential equation (.).

Our approach is based on the Z group index theory and some techniques of mathe-
matical analysis. We remark that the Z group index theory and the variational method
have also been employed to prove the existence of multiple periodic solutions of mixed
type differential equations in []. When (.) reduces to the special case, see system (.),
we obtain a more accurate result (see Remark .). Moreover, our result generalizes the
existence result obtained in [] as the equation considered in [] is a special case of our
system (.) with p(t) = q(t) = s = .

To prove our main result, we first make the following assumptions.

(H) ∂f (t,u,u,...,us+)
∂t �= .
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(H) There exists a function F(t, u, u, . . . , us+) ∈ C(Rs+,R) such that

∂F(t, u, u, . . . , us+)
∂us+

+
∂F(t, u, . . . , us+, us+)

∂us+

+ · · · +
∂F(t, us+, us+, . . . , us+)

∂us+
= f (t, u, u, . . . , us+).

(H) F(t, u, u, . . . , us+) is τ -periodic in t.
(H) F satisfies

F(t, –u, –u, . . . , –us+) = F(t, u, u, . . . , us+)

and

f (t, –u, –u, . . . , –us+) = –f (t, u, u, . . . , us+).

(H) F(t, u, u, . . . , us+) =  if and only if (u, u, . . . , us+) = ,∀t ∈ [, τ ].
(H) lim|u|→

F(t,u,u,...,us+)
|u| = , where |u| = (|u| + · · · + |us+|) 

 , t ∈ [, τ ].
(H) There exists a constant α >  such that F(t, u, u, . . . , us+) <  for t ∈ [, τ ] when

|u| + · · · + |us+| > α.

Note that system (.) is equivalent to the following system:

(
p(t)u′(t – sτ )

)′ – q(t)u(t – sτ ) + λ
(
F ′

s+
(
t, u(t), u(t – τ ), . . . , u(t – sτ )

)

+ · · · + F ′

(
t, u(t – sτ ), u

(
t – (s + )τ

)
, . . . , u(t – sτ )

))
= . (.)

The rest of this paper is organized as follows. In Section , we present some preliminar-
ies, which will be used to prove our main results. In Section  we state and prove our main
results. Finally, we provide one example to illustrate the applicability of our results.

2 Some preliminaries
Let

H
kτ =

{
u : R→R|u, u′ ∈ L(([, kτ ]

)
,R

)
, u() = u(kτ ), u′() = u′(kτ )

}
.

Then H
kτ is a separable and reflexive Banach space and the inner product

(u, v) =
∫ kτ



(
p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt,

induces the norm

‖u‖H
kτ

=
(∫ kτ



(
p(t)

∣
∣u′(t)

∣
∣ + q(t)

∣
∣u(t)

∣
∣)dt

) 


.

We introduce the following notations. Denote

F ′
s+(t, u, u, . . . , us+) =

∂F(t, u, u, . . . , us+)
∂us+

,
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F ′
s(t, u, . . . , us+, us+) =

∂F(t, u, . . . , us+, us+)
∂us+

,

· · ·

F ′
(t, us+, us+, . . . , us+) =

∂F(t, us+, us+, . . . , us+)
∂us+

.

Define a functional ϕ as

ϕ(u) =



∫ kτ



(
p(t)

∣
∣u′(t)

∣
∣ + q(t)

∣
∣u(t)

∣
∣)dt

– λ

∫ kτ


F
(
t, u(t), . . . , u(t – sτ )

)
dt, u ∈ H

kτ . (.)

Then ϕ is Fréchet differentiable at any u ∈ H
kτ . For any v ∈ H

kτ , by a simple calculation,
we have

ϕ′(u)(v) =
∫ kτ



(
p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt – λ

∫ kτ



(
F ′


(
t, u(t), . . . , u(t – sτ )

)
v(t)

+ F ′

(
t, u(t), u(t – τ ), . . . , u(t – sτ )

)
v(t – τ )

+ · · ·
+ F ′

s+
(
t, u(t), u(t – τ ), . . . , u(t – sτ )

)
v(t – sτ )

)
dt.

From (H), p(t) ∈ C([, τ ],R+), q(t) ∈ C([, τ ],R+), and their periodicity, we have

ϕ′(u)(v) =
∫ kτ



(
–
(
p(t)u′(t)

)′ + q(t)u(t)
)
v(t) dt – λ

∫ kτ



(
F ′


(
t, u(t), . . . , u(t – sτ )

)
v(t)

+ F ′

(
t, u(t + τ ), u(t), . . . , u

(
t – (s – )τ

))
v(t)

+ · · ·
+ F ′

s+
(
t, u(t + sτ ), u

(
t + (s – )τ

)
, . . . , u(t)

)
v(t)

)
dt

=
∫ kτ



(
–
(
p(t)u′(t)

)′ + q(t)u(t) – λ
(
F ′


(
t, u(t), . . . , u(t – sτ )

)

+ F ′

(
t, u(t + τ ), u(t), . . . , u

(
t – (s – )τ

))

+ · · ·
+ F ′

s+
(
t, u(t + sτ ), u

(
t + (s – )τ

)
, . . . , u(t)

)))
v(t) dt.

Therefore, the corresponding Euler equation of functional ϕ is

(
p(t)u′(t)

)′ – q(t)u(t) + λ
(
F ′


(
t, u(t), . . . , u(t – sτ )

)

+ F ′

(
t, u(t + τ ), u(t), . . . , u

(
t – (s – )τ

))

+ · · ·
+ F ′

s+
(
t, u(t + sτ ), u

(
t + (s – )τ

)
, . . . , u(t)

))
= . (.)
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Note that system (.) is equivalent of system (.). Hence, critical points of the functional
ϕ are classical kτ -periodic solutions of system (.).

Definition . []. Let E be a real reflexive Banach space, and

� =
{

A|A ⊂ E \ {} is closed, symmetric set
}

.

Define γ : � → Z
+ ∪ {+∞} as follows:

γ (A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{n ∈ Z
+ : there exists an odd continuous map

ϕ : A →R
n \ {}};

, if A = ∅;

+∞, if there is no odd continuous map ϕ : A →R
n \ {}

for any n ∈ Z
+.

(.)

Then we say γ is the genus of �.

Denote i(ϕ) = lima→– γ (ϕa) and i(ϕ) = lima→–∞ γ (ϕa) where ϕa = {u ∈ E|ϕ(u) ≤ a}.

Lemma . ([]) Let E be a real Banach space, ϕ ∈ C(E,R) with ϕ even functional and
satisfying the Palais-Smale (PS) condition. Suppose ϕ() =  and

(i) if there exist an m-dimensional subspace X of E and a constant r >  such that

sup
u∈X∩Br

ϕ(u) < , (.)

where Br is an open ball of radius r in E centered at , then we have i(ϕ) ≥ m;
(ii) if there exists a j-dimensional subspace V of E such that

inf
u∈V⊥

ϕ(u) > –∞, (.)

then we have i(ϕ) ≤ j.
Moreover, if m ≥ j, then ϕ possesses at least (m – j) distinct critical points.

3 Main result
In this section, we state and prove our main result. Set P = maxt∈[,τ ] p(t), Q = maxt∈[,τ ] q(t).

Theorem . Assume that (H)-(H) are satisfied. If there exists an integer m >  such
that λ satisfies

λ >
m(Pπ + Qkτ )

(s + )kτ  , (.)

then system (.) admits at least m non-zero solutions with the period kτ .

Proof We apply Lemma . to finish the proof. Under the assumptions (H), it is easy to
see that if function u is a solution of the system (.), then the function –u is also a solution
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of the system (.). Therefore, the solutions of the system (.) are a set which is symmetric
with respect to the origin in H

kτ . It follows directly from (.) and (H) that ϕ is even in
u and ϕ() = . The rest of the proof is divided into three steps.

Step : We show that the functional ϕ satisfies the assumption (ii) of Lemma ..
It follows from (H) that there exists a constant M >  such that

max
t∈R

F
(
t, u(t), . . . , u(t – sτ )

) ≤ max
(t,u,u,...,us+)∈


F(t, u, . . . , us+) ≤ M, (.)

where 
 = [, τ ] × [–α,α] × [–α,α] × · · · × [–α,α]. Combining (.) and (.), we get

ϕ(u) =


‖u‖

H
kτ

– λ

∫ kτ


F
(
t, u(t), . . . , u(t – sτ )

)
dt

≥ 

‖u‖

H
kτ

– λMkτ > –∞, (.)

which implies that ϕ is bounded from below. By the condition (ii) of Lemma ., we have
i(ϕ) = .

Step : We show that the functional ϕ satisfies PS condition.
For any given sequence {un} ∈ H

kτ such that {ϕ(un)} is bounded and limn→∞ ϕ′(un) = ,
there exists a constant C such that

∣
∣ϕ(un)

∣
∣ ≤ C,

∥
∥ϕ′(un)

∥
∥

(H
kτ

)∗ ≤ C, ∀n ∈N,

where (H
kτ )∗ is the dual space of H

kτ .
Therefore, we have



‖u‖

H
kτ

≤ C + λMkτ .

It follows that ‖un‖H
kτ

is bounded.
Since H

kτ is a reflexive Banach space, we can pick {un} be a weakly convergent sequence
to u in H

kτ and {un} converges uniformly to u in C[, kτ ]. So, we have

∫ kτ



(
F ′


(
t, un(t), . . . , un(t – sτ )

)
– F ′


(
t, u(t), . . . , u(t – sτ )

))(
un(t) – u(t)

)
dt → ,

∫ kτ



(
F ′


(
t, un(t), . . . , un(t – sτ )

)
– F ′


(
t, u(t), . . . , u(t – sτ )

))

× (
un(t – τ ) – u(t – τ )

)
dt → ,

· · ·
∫ kτ



(
F ′

s+
(
t, un(t), . . . , un(t – sτ )

)
– F ′

s+
(
t, u(t), u(t – τ ), . . . , u(t – sτ )

))

× (
un(t – sτ ) – u(t – sτ )

)
dt → ,

un(t) – u(t) →  as n → ∞, t ∈ [, kτ ].

(.)

Therefore, by (.), we have ‖un – u‖H
kτ

→ . Hence the functional ϕ satisfies the PS
condition.
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Step : We show that the functional ϕ satisfies the assumption (i) of Lemma ..
Let βj(t) = kτ

jπ sin jπ
κτ

t, j = , , . . . , m. By calculation, we obtain

∫ kτ



∣
∣βj(t)

∣
∣ dt =

(
kτ

jπ

)

kτ

and

∫ kτ



∣
∣β ′

j (t)
∣
∣ dt = kτ .

Define the m-dimensional linear subspace as follows:

Em = span
{
β(t),β(t), . . . ,βm(t)

}
.

It is clear to see that Em is a symmetric set. Take r > , when u(t) ∈ Em ∩ Sr , where Sr

denotes the boundary of Br , u(t) has an expansion u(t) =
∑m

j= bjβj(t), and

r =
∥
∥u(t)

∥
∥

H
kτ

=
∫ kτ



(
p(t)

∣
∣u′(t)

∣
∣ + q(t)

∣
∣u(t)

∣
∣)dt

≤ kτ

m∑

j=

b
j

(

P +
Qkτ 

jπ

)

. (.)

By (H), for given ε with  < ε < λm

(s+)kτ ( (s+)kτ

m – Pπ+Qkτ

λ
), there exists δ >  such

that when (|u(t)| + · · · + |u(t – sτ )|) 
 < δ, we have

λF
(
t, u(t), . . . , u(t – sτ )

)
> (λ – ε)

(∣
∣u(t)

∣
∣ + · · · +

∣
∣u(t – sτ )

∣
∣). (.)

Combining (.), (.), and (.), when u(t) ∈ Em ∩ Sr , we have

ϕ(u) =



∫ kτ



(
p(t)

∣
∣u′(t)

∣
∣ + q(t)

∣
∣u(t)

∣
∣)dt – λ

∫ kτ


F
(
t, u(t), . . . , u(t – sτ )

)
dt

≤ 

‖u‖

H
kτ

– (λ – ε)
∫ kτ



(∣
∣u(t)

∣
∣ + · · · +

∣
∣u(t – sτ )

∣
∣)dt

≤ kτ



m∑

j=

b
j

(

P +
Qkτ 

jπ

)

–
(λ – ε)(s + )kτ 

mπ kτ

m∑

j=

b
j

≤ kτ

π

m∑

j=

b
j

(

Pπ + Qkτ  –
(λ – ε)(s + )kτ 

m

)

=
λkτ

π

m∑

j=

b
j

(
Pπ + Qkτ 

λ
–

(s + )kτ 

m + ε
(s + )kτ 

λm

)

< .

Therefore i(ϕ) ≥ m. Consequently, system (.) admits at least m non-zero kτ -periodic
solutions. �
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Next we provide an example to illustrate the applicability of our result.

Example . Consider (.) with s = , p(t) = q(t) = ( + sin π t
τ

),

f
(
t, u(t), . . . , u(t – τ )

)

= u(t – τ ) – 
(

 + cos
π t
τ

)

u(t – τ )

× (
u(t) + u(t – τ ) + u(t – τ ) + u(t – τ ) + u(t – τ )

)

and

F(t, u, u, u) = u
 + u

 + u
 –

(

 + cos
π t
τ

)
(
u

 + u
 + u


).

It is easy to verify that f , F satisfy the assumptions of Theorem .. Therefore system (.)
admits at least m non-zero solutions with the period kτ . Note u =  is also a solution of
system (.).
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