1,628 research outputs found

    Study on the influence of temperature on the surface asperity in micro cross wedge rolling

    Get PDF
    When the common deformation processes are scaled down to micro/meso dimensions, size effect is the particular phenomena in microforming, which is related to the dominant influence of single grains inside the micropart. The conventional cross wedge rolling (CWR) is introduced into the micro scale in order to take the advantages of CWR. The micro cross wedge rolling (MCWR) has to confront with the phenomena of size effect that occurs in the common microforming processes inevitably. One of the approaches to compensate size effect is to increase the deforming temperature. An increased formability is achieved because more slip systems of polycrystal metal are activated at the elevated temperature. This reduces the anisotropic material behavior resulting in a more homogeneous forming with improved reproducibility. In this study, a YAG laser beam is applied to heat the workpiece. Finite element model (FEM) associated with a material constitutive formulation considering dislocation mechanics is set up to simulate the MCWR of pure copper utilizing the laser heating. The surface asperity as an indication of material heterogeneity in micro scale is quantitatively analysed. The simulation results show a good agreement with experimental results in terms of the surface asperity. © 2013 AIP Publishing LLC

    Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model

    Get PDF
    A photochemical trajectory model (PTM), coupled with the Master Chemical Mechanism (MCM) describing the degradation of 139 volatile organic compounds (VOCs) in the troposphere, was developed and used for the first time to simulate the formation of photochemical pollutants at Wangqingsha (WQS), Guangzhou during photochemical pollution episodes between 12 and 17 November, 2007. The simulated diurnal variations and mixing ratios of ozone were in good agreement with observed data (R2=0.80, P<0.05), indicating that the photochemical trajectory model - an integration of boundary layer trajectories, precursor emissions and chemical processing - provides a reasonable description of ozone formation in the Pearl River Delta (PRD) region. Calculated photochemical ozone creation potential (POCP) indices for the region indicated that alkanes and oxygenated organic compounds had relatively low reactivity, while alkenes and aromatics presented high reactivity, as seen in other airsheds in Europe. Analysis of the emission inventory found that the sum of 60 of the 139 VOC species accounted for 92% of the total POCP-weighted emission. The 60 VOC species include C2-C6 alkenes, C6-C8 aromatics, biogenic VOCs, and so on. The results indicated that regional scale ozone formation in the PRD region can be mainly attributed to a relatively small number of VOC species, namely isoprene, ethene, m-xylene, and toluene, etc. A further investigation of the relative contribution of the main emission source categories to ozone formation suggested that mobile sources were the largest contributor to regional O3 formation (40%), followed by biogenic sources (29%), VOC product-related sources (23%), industry (6%), biomass burning (1%), and power plants (1%). The findings obtained in this study would advance our knowledge of air quality in the PRD region, and provide useful information to local government on effective control of photochemical smog in the region. © 2010 Elsevier Ltd

    Curcumin Enhances Bortezomib Treatment of Myeloma by Inhibiting Heat Shock Protein 90 Expression

    Get PDF
    Purpose: To investigate whether curcumin augments bortezomib-induced apoptosis in myeloma cells (MM1.R line), and to explore the molecular mechanism with regard to heat shock protein 90 (HSP90) expression.Methods: MTT cell viability assay was used to assess growth inhibition of MM1.R cells at different concentrations of curcumin alone and also combined with 0.01 mM bortezomib. Annexin V and propidium iodide (PI) labeling were used to detect apoptosis. Caspase 3, caspase 9, NF-κB, and HSP 90 protein expression were measured by Western blotting.Results: Curcumin alone inhibited MM1.R cell growth and increased apoptosis in a concentration dependent manner. When curcumin was combined with low concentration (0.01 mM) bortezomib, both effects(viability inhibition and apoptosis induction increased (p < 0.05), whereas bortezomib alone had no effect (p > 0.05). Western blotting revealed that for curcumin and combined treatments, expression of the apoptotic markers, caspase 3 and caspase 9, increased while expression of NF-κB and HSP 90 decreased (p < 0.05). Again, low concentration bortezomib alone had no effect, whereas the combined treatment showed the largest effect, thus suggesting that the actions of curcumin and bortezomib are synergistic.Conclusion: Curcumin increased MM1.R cell sensitivity to bortezomib, which may be due to suppression of NF-κB and HSP90 activity.Keywords: Curcumin, Bortezomib, Myeloma cells, Cell growth, Apoptosis, Heat shock protein 9

    The Interaction between the First Transmembrane Domain and the Thumb of ASIC1a Is Critical for Its N-Glycosylation and Trafficking

    Get PDF
    Acid-sensing ion channel-1a (ASIC1a), the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1) and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacked the maturation of N-linked glycans through mid to late Golgi. These data suggest that disrupting the interaction between TM1 and thumb alters ASIC1a folding, impedes its glycosylation and reduces its trafficking. Moreover, reducing the culture temperature, an approach commonly used to facilitate protein folding, increased ASIC1a glycosylation, surface expression, current density and slowed the rate of desensitization. These results suggest that correct folding of extracellular ectodomain plays a critical role in ASIC1a biogenesis and function

    Adaptive growth of Tamarix taklamakanensis root systems in response to wind action

    Get PDF
    Root distribution and characteristics were investigated on a 70-year-old Tamarix taklamakanensis individual through uprooting. Rooting depth was restricted by water table, and root morphology adapted to resist the wind movement associated with shallow rooting. Root systems had more structural root mass and length on the leeward side than the windward side of the tree relative to the prevailing wind direction. Additional resistance to wind bending can occur as a result of increased thickening of the lower stem along the axis of the prevailing wind direction, and in T taklamakanensis, this thickening is greater on the lee side of the stem. We conclude that increased root distribution and thickening of the lower stem on the leeward are an important strategy for T taklamakanensis in response to wind action in the hinterland of Taklimakan Desert

    Potential immunomodulatory effects of SCAP on Treg conversion in tissue regeneration for regenerative endodontic treatment

    Get PDF
    To evaluate the expression of Foxp3‐positive lymphocytes around newly formed tissue after regenerative endodontic treatment (RET) in vivo and investigate the effects of stem cells from the apical papilla (SCAP) on the conversion of CD4+CD25− T cells to CD4+CD25+Foxp3+ regulatory T cells (Tregs) in vitro. Methodology Three 6‐month‐old beagles with nine doubled‐rooted premolars in each dog were randomly assigned to the RET group and the control group. RET was performed after apical periodontitis had been induced in the experimental immature teeth. Three months later, the expression of Foxp3 was detected in the histological sections by immunofluorescent staining. Human SCAP and CD4+CD25− T cells from mice spleens (1 : 1 and 1 : 5) were co‐cultured in cell–cell contact or in Transwells, respectively, for 24 and 72 h in vitro. The percentage of Tregs was evaluated by flow cytometry. The results were analysed using the Fisher's exact test and analysis of variance. P < 0.05 was regarded as statistically significant. Results Inflammatory cells were present with tissue regeneration in the RET group, and Foxp3‐positive T cells were enriched around the newly formed tissues. SCAP promoted Treg conversion after 72 h in vitro. Cell–cell contact played an important role after the 24 h co‐culture, whilst soluble factors were also involved after 72 h (P < 0.05). Conclusions SCAP promoted the conversion of pro‐inflammatory T cells to Tregs in vitro. Tregs were enriched around the regenerating tissues in the root canals after RET, which may create a suitable immune microenvironment for the differentiation of SCAP. This study provides an underlying mechanism for tissue regeneration during RET

    Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oysters are morphologically plastic and hence difficult subjects for taxonomic and evolutionary studies. It is long been suspected, based on the extraordinary species diversity observed, that Asia Pacific is the epicenter of oyster speciation. To understand the species diversity and its evolutionary history, we collected five <it>Crassostrea </it>species from Asia and sequenced their complete mitochondrial (mt) genomes in addition to two newly released Asian oysters (<it>C. iredalei </it>and <it>Saccostrea mordax</it>) for a comprehensive analysis.</p> <p>Results</p> <p>The six Asian <it>Crassostrea </it>mt genomes ranged from 18,226 to 22,446 bp in size, and all coded for 39 genes (12 proteins, 2 rRNAs and 25 tRNAs) on the same strand. Their genomes contained a split of the <it>rrnL </it>gene and duplication of <it>trnM</it>, <it>trnK </it>and <it>trnQ </it>genes. They shared the same gene order that differed from an Atlantic sister species by as many as nine tRNA changes (6 transpositions and 3 duplications) and even differed significantly from <it>S. mordax </it>in protein-coding genes. Phylogenetic analysis indicates that the six Asian <it>Crassostrea </it>species emerged between 3 and 43 Myr ago, while the Atlantic species evolved 83 Myr ago.</p> <p>Conclusions</p> <p>The complete conservation of gene order in the six Asian <it>Crassostrea </it>species over 43 Myr is highly unusual given the remarkable rate of rearrangements in their sister species and other bivalves. It provides strong evidence for the recent speciation of the six <it>Crassostrea </it>species in Asia. It further indicates that changes in mt gene order may not be strictly a function of time but subject to other constraints that are presently not well understood.</p
    corecore