314 research outputs found

    Optimal In Silico Target Gene Deletion through Nonlinear Programming for Genetic Engineering

    Get PDF
    Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized.Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy.Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial-and-error procedure

    The Hookworm Tissue Inhibitor of Metalloproteases (Ac-TMP-1) Modifies Dendritic Cell Function and Induces Generation of CD4 and CD8 Suppressor T Cells

    Get PDF
    Hookworm infection is a major cause of disease burden for humans. Recent studies have described hookworm-related immunosuppression in endemic populations and animal models. A Tissue Inhibitor of Metalloproteases (Ac-TMP-1) has been identified as one of the most abundant proteins released by the adult parasite. We investigated the effect of recombinant Ac-TMP-1 on dendritic cell (DC) and T cell function. Splenic T cells from C57BL/6 mice injected with Ac-TMP-1 showed reduced proliferation to restimulation with anti CD3 or bystander antigens such as OVA. Incubation of bone marrow-derived DCs with Ac-TMP-1 decreased MHC Class I and, especially, Class II expression but increased CD86 and IL-10 expression. Co-incubation of splenic T cells with DCs pulsed with Ac-TMP-1 induced their differentiation into CD4+ and, particularly, CD8+ CD25+Foxp3+ T cells that expressed IL-10. These cells were able to suppress proliferation of naïve and activated CD4+ T cells by TGF-Β-dependent (CD4+ suppressors) or independent (CD8+ suppressors) mechanisms. Priming of DCs with non-hookworm antigens, such as OVA, did not result in the generation of suppressor T cells. These data indicate that Ac-TMP-1 initiates the development of a regulatory response through modifications in DC function and generation of suppressor T cells. This is the first report to propose a role of suppressor CD8+ T cells in gastrointestinal helminthic infections

    In Vivo Serial MR Imaging of Magnetically Labeled Endothelial Progenitor Cells Homing to the Endothelium Injured Artery in Mice

    Get PDF
    Background: Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs) play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively. Methodology/Principal Findings: The left carotid common artery (LCCA) was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs). EPCs labeling was carried out in vitro using Fe2O3-poly-L-lysine (Fe2O3-PLL). In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T2WI. Larger MR signal voids of vessel wall on T2WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015). Quantitative analyses of vessel wall areas on T2WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p,0.05). Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA. Conclusions/Significance: These data indicate that MR imaging might be used as an in vivo method for the tracking of EPC

    Conserved Alternative Splicing and Expression Patterns of Arthropod N-Cadherin

    Get PDF
    Metazoan development requires complex mechanisms to generate cells with diverse function. Alternative splicing of pre-mRNA not only expands proteomic diversity but also provides a means to regulate tissue-specific molecular expression. The N-Cadherin gene in Drosophila contains three pairs of mutually-exclusive alternatively-spliced exons (MEs). However, no significant differences among the resulting protein isoforms have been successfully demonstrated in vivo. Furthermore, while the N-Cadherin gene products exhibit a complex spatiotemporal expression pattern within embryos, its underlying mechanisms and significance remain unknown. Here, we present results that suggest a critical role for alternative splicing in producing a crucial and reproducible complexity in the expression pattern of arthropod N-Cadherin. We demonstrate that the arthropod N-Cadherin gene has maintained the three sets of MEs for over 400 million years using in silico and in vivo approaches. Expression of isoforms derived from these MEs receives precise spatiotemporal control critical during development. Both Drosophila and Tribolium use ME-13a and ME-13b in “neural” and “mesodermal” splice variants, respectively. As proteins, either ME-13a- or ME-13b-containing isoform can cell-autonomously rescue the embryonic lethality caused by genetic loss of N-Cadherin. Ectopic muscle expression of either isoform beyond the time it normally ceases leads to paralysis and lethality. Together, our results offer an example of well-conserved alternative splicing increasing cellular diversity in metazoans

    Drugs and herbs given to prevent hepatotoxicity of tuberculosis therapy: systematic review of ingredients and evaluation studies

    Get PDF
    Background: Drugs to protect the liver are frequently prescribed in some countries as part of treatment for tuberculosis. The biological rationale is not clear, they are expensive and may do harm. We conducted a systematic review to a) describe the ingredients of "liver protection drugs"; and b) compare the evidence base for the policy against international standards. Methods: We searched international medical databases (MEDLINE, EMBASE, LILACS, CINAHL, Cochrane Central Register of Controlled Trials, and the specialised register of the Cochrane Infectious Diseases Group) and Chinese language databases (CNKI, VIP and WanFang) to April 2007. Our inclusion criteria were research papers that reported evaluating any liver protection drug or drugs for preventing liver damage in people taking anti-tuberculosis treatment. Two authors independently categorised and extracted data, and appraised the stated methods of evaluating their effectiveness. Results: Eighty five research articles met our inclusion criteria, carried out in China (77), India (2), Russia (4), Ukraine (2). These articles evaluated 30 distinct types of liver protection compounds categorised as herbal preparations, manufactured herbal products, combinations of vitamins and other non-herbal substances and manufactured pharmaceutical preparations. Critical appraisal of these articles showed that all were small, poorly conducted studies, measuring intermediate outcomes. Four trials that were described as randomised controlled trials were small, had short follow up, and did not meet international standards. Conclusion: There is no reliable evidence to support prescription of drugs or herbs to prevent liver damage in people on tuberculosis treatment

    The Drosophila neural lineages: a model system to study brain development and circuitry

    Get PDF
    In Drosophila, neurons of the central nervous system are grouped into units called lineages. Each lineage contains cells derived from a single neuroblast. Due to its clonal nature, the Drosophila brain is a valuable model system to study neuron development and circuit formation. To better understand the mechanisms underlying brain development, genetic manipulation tools can be utilized within lineages to visualize, knock down, or over-express proteins. Here, we will introduce the formation and development of lineages, discuss how one can utilize this model system, offer a comprehensive list of known lineages and their respective markers, and then briefly review studies that have utilized Drosophila neural lineages with a look at how this model system can benefit future endeavors

    Terpenoid biotransformations by Mucor species

    Get PDF
    Terpenoids are natural products of great interest due to their widespread use in agrochemicals, drugs, fragrances, flavouring and pigments. Biocatalysts are increasingly being used in the search for new derivatives with improved properties especially to obtain structurally novel leads for new drugs which are difficult to obtain using conventional organic chemical methods. This review, covering up to the end of 2012, reports on the application of Mucor species as catalysts in terpenoid biotransformation to obtain new drug targets, enhance pharmacological activity or decrease the unwanted effects of starting material
    corecore