95 research outputs found

    Optimization of East Med service of ZIM

    Get PDF

    Optical Study of Liquid Crystal Lens Doped with Multiwalled Carbon Nanotubes

    Get PDF
    In this paper, a new kind of electrically controlled liquid crystal lens, which respond in a relatively fast time, is presented. The multiwalled carbon nanotubes are doped into liquid crystal to fabricate the liquid crystal lens. As 0.02 % concentration of multiwalled carbon nanotubes is uniformly distributed in the liquid crystal, the optical features of the liquid crystal lens are obviously improved. The liquid crystal lens with a diameter of 2.0 mm was fabricated with about 0.2 s response time and less than 5 Vrms applied voltage. The focal length can vary from 16 to 510 mm, and the operation voltage changes from 1.0 to 5.5 Vrms. This liquid crystal lens has the very attractive feature of submillisecond response time, which is a much faster response time in comparison with conventional liquid crystal lens. Thus, this kind of liquid crystal lens has high potential for implementation in many practical imaging applications and imaging commercialisation

    Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes

    Get PDF
    In this paper, a relatively fast-response liquid crystal (LC) lens was proposed, which was fabricated by a simple method. Multi-walled carbon nanotubes (MWCNTs) were utilized in fabricating the LC lens. As MWCNTs were doped into the LCs, the dielectric anisotropy of the mixture changed, which was the key factor in solving the technical barrier of slow response time. In experiments, the effects of doping with MWCNTs were demonstrated. The concentration of doped MWCNTs was discussed in detail, and the best concentration and doping method were analyzed. The relationship between the concentration and response time was also obtained. This LC lens had a sub-millisecond response time, which was a relatively fast response time in comparison to conventional LC lenses of pristine LCs. Thus, this proposed method could be considered as a new method to realize fast-response LC lens

    Photonic link from single flux quantum circuits to room temperature

    Full text link
    Broadband, energy-efficient signal transfer between cryogenic and room-temperature environment has been a major bottleneck for superconducting quantum and classical logic circuits. Photonic links promise to overcome this challenge by offering simultaneous high bandwidth and low thermal load. However, the development of cryogenic electro-optic modulators -- a key component for photonic readout of electrical signals -- has been stifled by the stringent requirements of superconducting circuits. Rapid single flux quantum circuits (RSFQ), for example, operate with a tiny signal amplitude of only a few millivolts (mV), far below the volt-level signal used in conventional circuits. Here, we demonstrate the first direct optical readout of an RSFQ circuit without additional electrical amplification enabled by a novel superconducting electro-optic modulator (SEOM) featuring a record-low half-wave voltage V{\pi} of 42 mV on a 1 m-long SEOM. Leveraging the low ohmic loss of superconductors, we break the fundamental V{\pi}-bandwidth trade-off and demonstrate electro-optic bandwidth up to 17 GHz on a 0.2 m-long SEOM at cryogenic temperatures. Our work presents a viable solution toward high-bandwidth signal transfer between future large-scale superconducting circuits and room-temperature electronics

    Strong Anti-SAT: Secure and Effective Logic Locking

    Get PDF
    Logic locking has been proposed as strong protection of intellectual property (IP) against security threats in the IC supply chain especially when the fabrication facility is untrusted. Such techniques use additional locking circuitry to inject incorrect behavior into the digital functionality when the key is incorrect. A family of attacks known as SAT attacks provides a strong mathematical formulation to find the correct key of locked circuits. Many conventional SAT-resilient logic locking schemes fail to inject sufficient error into the circuit when the key is incorrect: there are usually very few (or only one) input minterms that cause any error at the circuit output. The state-of-the-art stripped functionality logic locking (SFLL) technique provides a wide spectrum of configurations that introduced a trade-off between security (i.e. SAT attack complexity) and effectiveness (i.e. the amount of error injected by a wrong key). In this work, we prove that such a trade-off is universal among all logic locking techniques. In order to attain high effectiveness of locking without compromising security, we propose a novel secure and effective logic locking scheme, called Strong Anti-SAT (SAS). SAS has the following significant improvements over existing techniques. (1) We prove that SAS\u27s security against SAT attack is not compromised by increases in effectiveness. (2) In contrast to prior work which focused solely on the circuit-level locking impact, we integrate SAS-locked modules into an 80386 processor and show that SAS has a high application-level impact. (3) SAS\u27s hardware overhead is smaller than that of existing techniques

    Muscle activation patterns and muscle synergies reflect different modes of coordination during upper extremity movement

    Get PDF
    A core issue in motor control is how the central nervous system generates and selects the muscle activation patterns necessary to achieve a variety of behaviors and movements. Extensive studies have verified that it is the foundation to induce a complex movement by the modular combinations of several muscles with a synergetic relationship. However, a few studies focus on the synergetic similarity and dissimilarity among different types of movements, especially for the upper extremity movements. In this study, we introduced the non-negative matrix factorization (NMF) method to explore the muscle activation patterns and synergy structure under 6 types of movements, involving the hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), supination (SU), and pronation (PR). For this, we enrolled 10 healthy subjects to record the electromyography signal for NMF calculation. The results showed a highly modular similarity of the muscle synergy among subjects under the same movement. Furthermore, Spearman’s correlation analysis indicated significant similarities among HO-WE, HO-SU, and WE-SU (p < 0.001). Additionally, we also found shared synergy and special synergy in activation patterns among different movements. This study confirmed the theory of modular structure in the central nervous system, which yields a stable synergetic pattern under the same movement. Our findings on muscle synergy will be of great significance to motor control and even to clinical assessment techniques

    The effect of hamstring donor-site block for functional outcomes and rehabilitation after anterior cruciate ligament reconstruction

    Get PDF
    PurposeTo determine the effect of local infiltration anesthesia (LIA) at the donor site combined with a femoral nerve block (FNB) on short-term postoperative pain, functional outcomes, and rehabilitation after arthroscopic hamstring tendon autograft anterior cruciate ligament reconstruction (ACLR).MethodsThis study was a single center, randomized controlled trial. Seventy-three subjects with ACL rupture were enrolled. Participants were randomly allocated to two groups, 47 in the experimental group (Group A) and 26 in the control group (Group B). All operations were performed under FNB. In Group A, 10 ml of 1% ropivacaine was injected precisely at the hamstring donor site. Patients in Group B were treated with the same amount of saline. Preoperatively and postoperatively, pain scores based on the numerical rating scale (NRS) and consumption of opioids were recorded. In addition, knee functions were assessed by the International Knee Documentation Committee Subjective Knee Form (IKDC), the Lysholm score, and the Knee injury and Osteoarthritis Outcome Score (KOOS) preoperatively and postoperatively at 1 and 3 months. In addition, we applied the KNEELAX3 arthrometer to evaluate the stability of the knee preoperatively and postoperatively so that subjective and objective knee conditions were obtained to help us assess knee recovery in a comprehensive manner.ResultsThe hamstring donor-site block reduced pain within the first 12 postoperative hours. There were no significant differences between two groups in pain intensity preoperatively and equal to or greater than 24 hours postoperatively. Furthermore, there were no differences between the groups concerning knee functions preoperatively or in the short-term follow-up at 1 and 3 months.ConclusionLIA at the donor site can effectively improve the early postoperative pain of patients after ACLR and reduce the use of opioids without affecting the functional outcomes of the surgery
    • …
    corecore