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Guizhi‑Shaoyao‑Zhimu decoction 
attenuates rheumatoid arthritis partially 
by reversing inflammation‑immune system 
imbalance
Qiuyan Guo1†, Xia Mao1†, Yanqiong Zhang1*†, Shuqin Meng2, Yue Xi2, Yi Ding2, Xiaocun Zhang3, Yuntao Dai1, 
Xia Liu3, Chao Wang1, Yuting Li1 and Na Lin1*

Abstract 

Background:  Guizhi-Shaoyao-Zhimu decoction (GSZD) has been extensively used for rheumatoid arthritis (RA) 
therapy. Marked therapeutic efficacy of GSZD acting on RA has been demonstrated in several long-term clinical trials 
without any significant side effects. However, its pharmacological mechanisms remain unclear due to a lack of appro-
priate scientific methodology.

Methods:  GSZD’s mechanisms of action were investigated using an integrative approach that combined drug target 
prediction, network analysis, and experimental validation.

Results:  A total of 77 putative targets were identified for 165 assessed chemical components of GSZD. After calculat-
ing the topological features of the nodes and edges in the created drug-target network, we identified a candidate 
GSZD-targeted signal axis that contained interactions between two putative GSZD targets [histone deacetylase 1 
(HDAC1) and heat shock protein 90 kDa alpha, class A member 1 (HSP90AA1)] and three known RA-related targets 
[NFKB2; inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta (IKBKB); and tumor necrosis factor-
alpha (TNF-α)]. This signal axis could connect different functional modules that are significantly associated with 
various RA-related signaling pathways, including T/B cell receptor, Toll-like receptor, NF-kappa B and TNF pathways, as 
well as osteoclast differentiation. Furthermore, the therapeutic effects and putative molecular mechanisms of GSZD’s 
actions on RA were experimentally validated in vitro and in vivo.

Conclusions:  GSZD may partially attenuate RA by reversing inflammation-immune system imbalance and regulating 
the HDAC1–HSP90AA1–NFKB2–IKBKB–TNF-α signaling axis.

Keywords:  TCM herbal formula, Rheumatoid arthritis, Guizhi-Shaoyao-Zhimu decoction, Network pharmacology, 
Experimental validation
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Background
Rheumatoid arthritis (RA) is a chronic, debilitating 
inflammatory joint disease characterized by synovial 
inflammation and the progressive destruction of cartilage 

and bone [1]. Several studies have indicated that RA has 
a prevalence rate of approximately 0.5 to 1  % in adult 
populations in developed countries [2]. Moreover, grow-
ing evidence indicates that RA patients are more at risk 
of developing a collection of comorbidities that have 
no typical features and are difficult to diagnose, leading 
them to have poorer clinical outcomes than that of the 
general population [3]. Current therapeutic agents, such 
as non-steroidal anti-inflammatory drugs (NSAIDs), 
disease-modifying anti-rheumatic drugs (DMARDs), 
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glucocorticoids, and biological response modifiers, have 
been used to reduce inflammation, relieve pain, sup-
press disease activity, prevent joint damage, and slow 
the progression of RA [4]. However, their poor efficacies, 
high prices and adverse effects are of concern [5, 6]. An 
increasing number of patients with RA worldwide are 
seeking help from complementary and alternative medi-
cine to alleviate the severity of the disease and to improve 
physical conditions. Among these treatments, traditional 
Chinese medicine (TCM) is regarded as a powerful treat-
ment option, and it has been used for RA therapy for 
thousands of years in China [7].

In TCM, RA is categorized as “arthromyodynia” (Bi 
Zheng, Bi syndrome or blockage syndrome) [8, 9]. Vari-
ous TCM-based herbal formulae and extracts have been 
reported to effectively relieve the severity of RA. Among 
them, Guizhi-Shaoyao-Zhimu Decoction (GSZD), as a 
classic TCM-based herbal formula originally recorded 
by the famous Chinese physician Zhang Zhongjing in 
“Synopsis of the prescriptions of the golden chamber” 
(Chinese name: Jin Gui Yao Lue) is widely produced in 
China in accordance with China Pharmacopoeia stand-
ards of quality control. GSZD is composed of nine Chi-
nese herbs, including Ramulus Cinnamomi (Guizhi), 
Paeonia lactiflora (Shaoyao), Radix Glycytthizae (Gan-
cao), Herba Ephedrae (Mahuang), Rhizoma Zingiberis 
Recens (Shengjiang), Rhizoma Atractylodis Macroceph-
alae (Baizhu), Rhizoma Anemarrhenae (Zhimu), Raidix 
Saposhnikoviae (Fangfeng) and Radix Aconiti Lateralis 
Preparata (Fuzi). Recent clinical studies have revealed 
that the clinical cure rates of GZSD on treatment of 
patients with RA may range from 87.5 to 95.8  %, supe-
rior to those of indometacin, tripterygium glycosides and 
prednisone [10–13]. In addition to its marked efficacy, 
no significant side effects of GZSD have been observed 
in several long-term trials in China [14]. Modern medical 
research has shown that GSZD can alleviate RA progres-
sion by restraining osteoclast differentiation and activa-
tion, reducing synovial cell proliferation, and increasing 
synovial cell apoptosis both in vivo and in vitro [15, 16]. 
However, the underlying mechanisms of this formula’s 
actions on RA have not been fully clarified.

TCM formulae containing large numbers of composite 
compounds are too complex to be assessed by traditional 
experimental methods based on the “one gene, one drug, 
one disease” paradigm [17]. Growing evidence shows that 
the synergistic and holistic philosophy underlying the 
creation of TCM formulae is consistent with the main 
view of the emerging concept of network pharmacology, 
which is based on the rapid progress of systems biology, 
network biology and poly-pharmacology [18]. By apply-
ing a set of network-based methods, network pharmacol-
ogy can define TCM from a systems perspective and at 

a molecular level, providing a new method of translating 
TCM from an experience-based to an evidence-based 
medical system by integrating network-based computa-
tional predictions and experimental validations [19, 20]. 
In the current study, as shown in Fig. 1, we predicted the 
putative targets of GSZD based on drug structures and 
functions, constructed and analyzed the herb-target net-
work and the putative target-RA related gene network, 
and performed in vitro and in vivo experimental valida-
tions to highlight that the therapeutic effects of GSZD 
on RA might be associated with its roles in reversing the 
imbalance of inflammation-immune system during the 
disease progression.

Methods
Data preparation
Composite compounds of each herb in GSZD
The composite compounds of each herb in GSZD were 
obtained from TCM Database@Taiwan (http://tcm.cmu.
edu.tw/, updated in 2012-06-28), which is currently the 
largest non-commercial TCM database worldwide [21]. 
Detailed information on the composite compounds of 
each herb in GSZD is provided in Additional file 1: Table 
S1.

Known RA‑related targets
Known RA-related targets were collected from existing 
resources, including the DrugBank database [22] (http://
www.drugbank.ca/, version 3.0), the Online Mende-
lian Inheritance in Man (OMIM) database [23] (http://
www.omim.org/, last updated on October 31, 2013), 
the Genetic Association Database (GAD) [24] (http://
geneticassociationdb.nih.gov/, last updated on August 
18, 2013) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Pathway Database [25] (http://www.
genome.jp/kegg/, last updated on October 16, 2012), in 
accordance with our previous study. Detailed informa-
tion on these known therapeutic targets is provided in 
Additional file 1: File S1-Sect. 1 and Table S2.

Molecular interaction data
The interaction data corresponding to the putative tar-
gets of GSZD and known RA-related targets were col-
lected from existing databases [26–33] (Additional file 1: 
Table S3).

Prediction of putative GSZD targets
As described in our previous studies [34, 35], the Drug 
Similarity Search tool in the Therapeutic Targets Data-
base (TTD, http://xin.cz3.nus.edu.sg/group/cjttd/ttd.asp, 
Version 4.3.02 released on Aug 25th 2011) was used to 
identify drugs similar to the herbs contained in GSZD via 
structural similarity comparison. We only selected drugs 
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with high similarity scores (>0.85, similar–very similar) to 
the structures of the composite compounds of the herbs 
contained in GSZD. The therapeutic targets of the similar 

drugs were identified as putative targets of the herbs con-
tained in GSZD. The performance of this prediction 
method has been assessed in our previous studies [34, 35].

Fig. 1  A schematic diagram of the systematic strategies for unraveling the pharmacological mechanisms of herbal formula GSZD acting on RA
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Network construction and analysis
The putative herb-target network, putative targets of 
GSZD and known RA-related targets network and hub-
pathway network were constructed and visualized using 
Navigator software (Version 2.2.1).

To assess the topological properties of each node in the 
networks, five features, including ‘Degree’, ‘Closeness’, 
‘Node-betweenness’, ‘K-coreness’ and ‘Edge-betweenness’, 
were calculated according to our previous studies [34–
36]. Please see the detailed information in Additional 
file 1: File S1-Sect. 2.

Experimental validation
The study was approved by the Research Ethics Com-
mittee of the Institute of Chinese Materia Medica, China 
Academy of Chinese Medical Sciences, Beijing, China. 
All procedures conformed to the guidelines and regula-
tions for the use and care of animals of the Center for 
Laboratory Animal Care, China Academy of Chinese 
Medical Sciences.

Preparation of GSZD
Based on the composition of GSZD recorded in the Chi-
nese Pharmacopoeia 2010 edition, GSZD was prepared 
using the following procedure. Radix Aconiti Lateralis 
Preparata (10  g) and a mixture of Ramulus Cinnam-
omi (12  g), Paeonia lactiflora (9  g), Rhizoma Anemar-
rhenae (12  g), Rhizoma Atractylodis Macrocephalae 
(15  g), Radix Saposhnikoviae (12  g), Herba Ephedrae 
(12 g), Radix Glycytthizae (6 g), and Rhizoma Zingiberis 
Recens (15  g) were separately soaked with pure water 
for 30 min. Then, Radix Aconiti Lateralis Preparata was 
added to 1040  mL (1:10  g/v) of boiling pure water and 
boiled for 30 min; the herb mixture was then added and 
boiled for 40  min. The filtrates were collected, and the 
residues were decocted in 520 mL (1:5 g/v) of water for 
40  min. The filtrates from each decoction were com-
bined and concentrated to 1 g/mL at 90 °C. The obtained 
GSZD was stored at 4 °C prior to use. High-performance 
liquid chromatography with diode array detection 
(HPLC–DAD) fingerprinting was used to quantify the 
main chemical components of the nine herbs contained 
in GSZD.

Animals
Experiments were performed on 6-week-old male Lewis 
rats at a weight of 180–220  g, which were purchased 
from Beijing Vital River Laboratory Animal Technology 
Ltd (production license No: SCXK 2012-0001). All ani-
mals were housed in a temperature-controlled room at a 
constant temperature of 24 ± 1  °C (mean ± SD) with a 
12-h light/dark cycle. Food pellets and water were pro-
vided ad libitum.

Cell culture and drug treatment
HFLS-RA (Cell Applications, USA) cells were used for 
in vitro experimental validation. The cells were cultured 
in sterile synoviocyte growth medium (Cell Applica-
tions, USA) supplemented with 100  U/mL 1 penicillin, 
80 U/mL 1 streptomycin, and 2 mM glutamine and were 
maintained at 37  °C in a humidified atmosphere of 5  % 
CO2/95 % air. The cells were used between passage 4 and 
8 and were incubated with 10 ng/mL IL-1β and different 
concentrations of GSZD (5.12 ×  10−5, 2.56 ×  10−4 and 
1.28 × 10−3 μg/mL) for 24 h.

Induction and treatment of AIA in rats
Arthritis was induced in rats by inoculation with Freund’s 
complete adjuvant (CFA). Briefly, the rats were injected 
intradermally at the base of the tail with 0.1  mL CFA 
(1  mg of heat-killed Mycobacterium tuberculosis sus-
pended in 0.1 mL paraffin oil; Difco). Control group rats 
were injected with an equal volume of saline instead of 
CFA. With this protocol, the first signs of inflammation 
were observed on day 11 after adjuvant injection.

GSZD treatment began on the day of CFA immuniza-
tion and was administered daily for a period of 21 days. A 
GSZD solution was prepared at a concentration of 0.9 g/
mL and delivered by oral administration. Male Lewis rats 
were divided into six groups: a normal control group 
(Normal, n = 12), an AIA model control group (Model, 
n  =  20), GSZD-low/middle/high groups (n  =  8 per 
group) and a 0.2 mg/kg MTX group (MTX, n = 8). The 
dosage selections for the low-, middle- and high-GSZD 
groups were nearly equivalent to 0.5, 1 and 2 times the 
daily RA patient dosage. The AIA rats were treated with 
4.65 g/(kg day) GSZD (GSZD-low), 9.3 g/(kg day) GSZD 
(GSZD-middle) and 18.6 g/(kg day) GSZD (GSZD-high). 
Detailed information on water and food consumption 
and the body weight changes in each group throughout 
the 21  day experiment period is provided in Additional 
file 1: Tables S4–S6.

Assessment of arthritis severity
Arthritis severity was evaluated as in our previous study 
[36]. Please see the detailed information provided in 
Additional file 1: File S1—Sect. 3.

Histological observation
Histology was evaluated as in our previous study [36]. 
Please see the detailed information provided in Addi-
tional file 1: File S1–Sect. 4.

Western blot analysis
Western blotting and semi-quantitative analysis were 
performed as in our previous study [36]. To investigate 
the effect of GSZD on the expression levels of HDAC1, 
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HSP90AA1, NFKB2, IKBKB and TNF-α proteins, HFLS 
were treated with 10 ng/mL of IL-1β in the presence of 
various concentrations of GSZD. Antibodies against 
the following proteins were used: HDAC1 (rabbit poly-
clonal antibody; dilution 1:1000; Abcam, Cambridge, 
UK), HSP90AA1 (rabbit polyclonal antibody; dilution 
1:500; Abcam, Cambridge, UK), NFKB2 (rabbit mono-
clonal antibody; dilution 1:1000; Cell Signaling), IKKB 
(rabbit monoclonal antibody; dilution 1:1000; Abcam, 
Cambridge, UK), and TNF-α (rabbit polyclonal antibody; 
dilution 1:100; Abcam, Cambridge, UK). All experiments 
were performed in triplicate. The mean normalized pro-
tein expression ±  SD was calculated from independent 
experiments.

Statistical analysis
Statistical analyses were performed using SPSS version 
13.0 for Windows (SPSS Inc, Chicago, IL, USA). Continu-
ous variables were expressed as X ± s. Arthritis incidence 
and the percentage of arthritic limbs were analyzed by 
Chi square tests. The arthritis index and the pathologi-
cal score were analyzed with non-parametric statistics 
(Kruskal–Wallis test). Other data were analyzed by one-
way ANOVA followed by Fisher’s LSD test. P values less 
than 0.05 were considered statistically significant.

Results and discussion
Inference of RA‑related pathological processes affected 
by GSZD
Because drug indications are often determined by the 
functions of their corresponding targets and drugs with 
similar chemical structures generally exert similar thera-
peutic effects, we predicted the putative targets of nine 
herbs contained in GSZD based on the similarities in 
drug structure and function as described by our previ-
ous studies [34, 35]. A total of 77 putative targets were 
identified out of 165 chemical components containing in 
GSZD (Additional file 1: Table S7).

Then, we compared known drugs with similar struc-
tures to the chemical components in the nine GSZD 
herbs. As a result, the nine GSZD herbs shared 15 puta-
tive targets with known drugs for the treatment of RA, 
autoimmune diseases, inflammatory diseases, and pain, 
as well as for the provision of anesthesia (Table 1).

The putative targets of Herba Ephedrae, Radix Aco-
niti Lateralis Preparata, Radix Glycytthizae, Raidix 
Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Atrac-
tylodis Macrocephalae and Rhizoma Zingiberis Recens 
included nitric oxide synthase 2 (NOS2); nuclear recep-
tor subfamily 3, group C, member 1 (NR3C1); phospho-
lipase A2, group IB (PLA2G1B); and serpin peptidase 
inhibitor, clade A, member 6 (SERPINA6), which are 
the targets of several glucocorticoids and FDA-approved 

anti-inflammatory and immunosuppressive agents for 
the treatment of RA, such as Alclometasone, Amcinon-
ide, Betamethasone, etc. based on DrugBank (Version 4.3, 
http://www.drugbank.ca/), suggesting that these putative 
targets might be involved in the anti-inflammatory and 
immunosuppressive effects exerted by GSZD on RA.

The management of pain is an important compo-
nent of RA patient care, and cholinergic receptor, nico-
tinic, alpha 2 (CHRNA2), gamma-aminobutyric acid A 
receptor (GABRA1), 5-hydroxytryptamine receptor 1B 
(HTR1B), 5-hydroxytryptamine receptor 1D (HTR1D), 
NOS2; opioid receptor, delta 1 (OPRD1) and prostaglan-
din-endoperoxide synthase 2 (PTGS2) have been iden-
tified as therapeutic targets for severe pathologic pain. 
The current study predicted that Herba Ephedrae, Radix 
Aconiti Lateralis Preparata, Radix Glycytthizae, Raidix 
Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Atrac-
tylodis Macrocephalae and Rhizoma Zingiberis Recens 
might target these molecules.

Providing anesthesia to patients with osteoarticular 
disorders during RA progression involves a number of 
risks not only due to the mechanical deformations caused 
by the disease but also in relation to the cardiovascular, 
respiratory, renal, and digestive systems [37]. Thus, to 
benefit RA patients, it is of great clinical significance to 
control anesthesia effectively. Here, seven GSZD herbs, 
including Herba Ephedrae, Radix Aconiti Lateralis Pre-
parata, Radix Glycytthizae, Raidix Saposhnikoviae, 
Paeonia lactiflora, Ramulus Cinnamomi and Rhizoma 
Zingiberis Recens, shared targets [cholinergic recep-
tor muscarinic 1 (CHRM1), CHRNA2, fatty acid amide 
hydrolase (FAAH), farnesyltransferase CAAX box alpha 
(FNTA), GABRA1 and OPRM1] with known anesthetic 
drugs, including glycopyrrolate, methohexital, metocu-
rine, mivacurium, naloxone, propofol and thiamylal.

Collectively, the putative targets of GSZD mainly have 
roles in the progression of inflammation, joint destruc-
tion and pathological pain. As such, GSZD’s therapeutic 
efficacy in the treatment of RA may arise from its regula-
tion of the expression or activities of these targets.

Combinatorial effects of herbs contained in GSZD acting 
on RA
The compatibility of a TCM herbal formula emphasizes 
the “Jun (emperor)–Chen (minister)–Zuo (adjuvant)–
Shi (messenger)” rule with proper herbs to synergize the 
therapeutic efficacies and minimize adverse effects inte-
grally [38, 39]. According to the co-module analysis [40], 
the herb-putative target network was divided into three 
modules, which were respectively centered on Ramulus 
Cinnamomi, Paeonia lactiflora and Rhizoma Anemar-
rhenae (Fig.  2). In TCM theory, Ramulus Cinnam-
omi, Rhizoma Atractylodis Macrocephalae and Herba 

http://www.drugbank.ca/
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Ephedrae are considered as the “Jun” herbs and play the 
leading roles in GSZD [41]. These herbs were linked to 
anti-inflammatory and anti-allergy activities in previous 
study [42] and were computationally confirmed here. 
Their putative targets were significantly associated with 
the regulation of inflammatory process, cytokine stimu-
lus response and cytokine production, and complement 
and coagulation cascades, which are all involved into the 
main pathological changes during RA progression, such 
as inflammation, synovial pnnus formation and angio-
genesis. Radix Aconiti Lateralis Preparata and Raidix 
Saposhnikoviae function as “Chen” herbs which enhance 
the pharmacological actions of the “Jun” herbs. Radix 
Glycytthizae and Rhizoma Zingiberis Recens are consid-
ered as “Shi” herbs and harmonize the actions of other 
herbs in GSZD [43]. Moreover, Paeonia lactiflora and 
Rhizoma Anemarrhenae serve as “Zuo” herbs which dis-
pel toxins and guide other drugs to their corresponding 
meridian channels [44]. Similarly, we found that the bio-
logical functions and pathways of the Paeonia lactiflora 
and Rhizoma Anemarrhenae-centered modules respec-
tively focused on the regulation of drug metabolism and 

cell surface receptor-mediated signal transduction, and 
G-protein-coupled receptor protein signaling.

GSZD has a reverse effect on inflammation‑immune 
regulatory network imbalance during RA progression
To elucidate the function of herb putative targets of 
GSZD, pathway enrichment analysis were performed 
and found that the top 6 pathways that the GSZD puta-
tive targets were significantly associated with neuroactive 
ligand-receptor interaction, toll-like receptor signaling, 
osteoclast differentiation, calcium signaling pathway, 
complement and coagulation cascades and VEGF signal-
ing (all P < 0.001, Additional file 1: Table S8).

Performing molecular network-based analysis by map-
ping disease-related genes and drug target genes into an 
interaction network can efficiently illustrate underlying 
links between drugs and disease. Thus, we constructed a 
network based on interactions between putative GSZD 
targets, known RA-related targets and other human 
proteins. A node may function as a hub if its degree is 
more than two-fold of the median degree of all nodes 
in a network [45]. As a result, 135 hubs were identified, 

Fig. 2  The co-module underlying GSZD formula and pathways/pathological changes involved into RA progression. Co-module analysis was per-
formed by mapping the herbs into shared modules if the distance between two herbs was very close (shared more putative targets or their puta-
tive targets had more interactions with each other) in the network. As a result, the herb-putative target network was divided into three modules, 
which were centered on Ramulus Cinnamomi, Paeonia lactiflora and Rhizoma Anemarrhenae
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and our pathway enrichment analysis showed that these 
hubs were frequently implicated in T and B cell receptor 
signaling, Toll-like receptor signaling, osteoclast differen-
tiation, NF-kappa B signaling, TNF signaling, chemokine 
signaling, VEGF signaling, and neuroactive ligand-recep-
tor interactions. All of these actions play crucial roles 
in the main pathological events that comprise RA pro-
gression, such as inflammation, synovial pannus forma-
tion, inflammatory cell infiltration, angiogenesis, joint 
destruction and pain [46] (Fig. 3).

Subsequently, a network of hubs based on the direct 
interactions of the above was constructed (please see 
the interaction network data in Additional file  1: Table 
S9). The major hubs of this network were identified by 
calculating four topological features of each hub in the 
network: ‘Degree,’ ‘Node betweenness’, ‘Closeness’ and 
‘K value’. The median values of ‘Degree’, ‘Node between-
ness’, ‘Closeness’ and ‘K value’ were 8.00, 0.45, 41.31 and 
6.00, respectively. Therefore, we determined that hubs 
with ‘Degree’ >8.00, ‘Node betweenness’ >0.45, ‘Close-
ness’ >41.31, and ‘K value’ >6.00 were major hubs. As a 
result, 40 major hubs were identified (the detailed infor-
mation on the topological features of the 40 major hubs 
is provided in Additional file 1: Table S10). After assess-
ing the intersection of the above with the putative GSZD 

targets (Additional file 1: Table S7), 10 major hubs were 
identified as candidate targets for this formula, including 
albumin (ALB); androgen receptor (AR); cyclin-depend-
ent kinase 1 (CDK1); estrogen receptor 1 (ESR1); his-
tone deacetylase 1 (HDAC1); heat shock protein 90 kDa 
alpha, class A member 1 (HSP90AA1); NR3C1; retinoic 
acid receptor alpha (RARA); signal transducer and acti-
vator of transcription 3 (STAT3); and vitamin D receptor 
(VDR).

Growing evidence has shown that an interaction with 
a high ‘edge-betweenness’ may function as a bottleneck 
with many ‘shortest paths’ going through it and may thus 
control the rate of information flow [47]. Here, we fur-
ther calculated the ‘edge-betweenness’ of each interac-
tion in the network of direct interactions among hubs 
to select important interactions. Among the candidate 
GSZD targets, the HDAC1–HSP90AA1 interaction 
had the highest edge-betweenness value (128.25, Addi-
tional file 1: Table S11), suggesting that it functions as a 
bottleneck in the network. As shown in the interaction 
network of GSZD herbs and hubs (Fig.  4), a signal axis 
containing interactions between HDAC1, HSP90AA1 
and three known RA-related targets, including nuclear 
factor of kappa light polypeptide gene enhancer in B-cells 
2 (NFKB2), inhibitor of kappa light polypeptide gene 

Fig. 3  Hub-pathway network of GSZD. The pathway enrichment analysis showed that the hubs, identified from the interaction network of putative 
targets of GSZD and known RA-related targets, were more frequently implicated into T/B cell receptor signaling pathway, Toll-like receptor signaling 
pathway, Osteoclast differentiation, NF-kappa B signaling pathway, TNF signaling pathway, Chemokine signaling pathway, VEGF signaling pathway 
and Neuroactive ligand-receptor interaction, which all play crucial roles in the main pathological events during the RA progression, such as inflam-
mation, synovial pannus formation, inflammatory cell infiltration, angiogenesis, joint destruction and pain. Yellow nodes refer to the putative targets 
of GSZD; Blue nodes refer to the known RA-related targets; Green nodes refer to other human genes interacted with the putative targets of GSZD or 
the known RA-related targets
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enhancer in B-cells, kinase beta (IKBKB) and tumor 
necrosis factor-alpha (TNF-α), was found to play a cru-
cial role in connecting different modules. These modules 
were significantly associated with antigen processing and 
presentation, T and B cell receptor signaling, Toll-like 
receptor signaling, natural killer cell-mediated cytotoxic-
ity, osteoclast differentiation, NF-kappa B signaling and 
TNF signaling, implying that GSZD might reverse the 
inflammation-immune regulatory network imbalance 
that occurs during RA progression partially by regulating 
the HDAC1–HSP90AA1–NFKB2–IKBKB–TNF-α axis. 
To validate this hypothesis, an adjuvant-induced arthri-
tis (AIA) rat model was constructed and used to demon-
strate the preventive effects of GSZD on inflammation 
and joint destruction. Following this, its regulatory 
effects on the HDAC1–HSP90AA1–NFKB2–IKBKB–
TNF-α axis were also assessed both in vitro and in vivo.

GSZD treatment ameliorates the development and severity 
of arthritis in AIA rats
Through HPLC–DAD, Ephedrine from Herba Ephedrae, 
mangiferin from Rhizoma Anemarrhenae, paeoniflorin 
from Paeonia lactiflora, liquiritin from Radix Glycytthi-
zae, 4′-O-beta-Glucopyranosyl-5-O-Methylvisamminol 
from Raidix Saposhnikoviae, aconitine from Radix Aco-
niti Lateralis Preparata, and cinnamic aldehyde from 
Ramulus Cinnamomi were identified in the water extract 
of GSZD (Fig. 5).

Macroscopic changes of arthritis, such as redness and 
swelling, were clearly observed in the AIA rats (Fig. 6a), 
but were attenuated by the treatment of GSZD [18.6  g/
(kg  day)] and MTX [0.2  mg/(kg  day)]. Statistically, the 
mean arthritis score (all P < 0.05, Fig. 6b), arthritis inci-
dence (all P < 0.05, Fig. 6c), percentage of arthritic limbs 
(all P  <  0.05, Fig.  6d) and time of first appearance of 
arthritis (for doses of 9.3 and 18.6  g/(kg  day), P  <  0.05, 
Fig.  6e) were markedly lower in the GSZD-treated rats, 
especially in the middle- and high-dosage groups, and 
in the MTX-treated rats compared to the untreated AIA 
rats.

GSZD treatment protects against synovitis and joint 
destruction in AIA rats
Histopathological evaluation of ankle joint sections from 
the AIA rats showed inflammatory cell infiltration, syno-
vial hyperplasia and articular tissue destruction, which all 
could be attenuated by the oral administration of GSZD 
(Fig. 7). In brief, synovial edema and extensive infiltration 
of inflammatory cells occurred in the AIA rats, but were 
repaired by the treatment of GSZD, which promoted the 
proliferation and maturation of fibrovascular granulation 
tissues and reduced the number of inflammatory cells 
(Fig. 7a). Cartilage tissue thinning, dissolution and disap-
pearance, as well as extensive inflammatory cell infiltra-
tion with plasma cells and lymphocytes, was observed 
in the articular cartilage of the ankles of the untreated 

Fig. 4  Network of interactions among herbs of GSZD and hubs obtained from the network of putative targets of GSZD and known RA-related 
targets. Yellow nodes refer to the putative targets of GSZD; Blue nodes refer to the known RA-related targets; Green nodes refer to other human genes 
interacted with the putative targets of GSZD or the known RA-related targets



Page 10 of 16Guo et al. J Transl Med  (2016) 14:165 

AIA rats. In contrast, GSZD treatment prevented carti-
lage degeneration and markedly reduced inflammation 
by promoting cartilage cell proliferation and calcifica-
tion and reducing inflammatory cell infiltration (Fig. 7b). 
Similarly, GSZD treatment typically preserved articular 
cartilage matrix integrity in markedly inflamed joints, as 

indicated by the retention of toluidine blue staining in the 
matrix (Fig.  7c). Moreover, the AIA rats showed severe 
bone destruction with inflammatory cell infiltration and 
phagocytosis of osteoclasts, which were reversed by the 
oral administration of GSZD mainly via the promotion 
of osteoblast proliferation and the acceleration of the 

Fig. 5  The herbal formula GSZD. a Photos of nine Chinese herbs in GSZD, including Ramulus Cinnamomi (Guizhi, GZ), Paeonia lactiflora (Shaoyao, 
SY), Rhizoma Atractylodis Macrocephalae (Baizhu, BZ), Raidix Saposhnikoviae (Fangfeng, FF), RadixAconiti Lateralis Preparata (Fuzi, FZ), Herba Ephe-
drae (Mahuang, MH), RhizomaZingiberis Recens (Shengjiang, SJ), Rhizoma Anemarrhenae (Zhimu, ZM) and RadixGlycytthizae (Gancao, GC) in order. 
b HPLC graphs of GSZD. HPLC was performed to identify the phytochemical profiles of GSZD. c The main chemicals in GSZD



Page 11 of 16Guo et al. J Transl Med  (2016) 14:165 

calcification and ossification of regenerated cartilage tis-
sues (Fig. 7d).

We statistically evaluated the anti-inflammatory and 
bone protective effects of GSZD with semi-quantitative 
grading scales (on a scale of 0–3) [48] and assessed artic-
ular cartilage matrix integrity in different groups based 
on the loss of toluidine blue staining [49]. As shown in 
Fig. 7e and f, the inflammation score and degree of carti-
lage damage in the GSZD-treated AIA rats were signifi-
cantly decreased in a dose-dependent manner compared 
to the untreated AIA rats (all P < 0.05). Treatment with 
GSZD also significantly and dose-dependently reduced 

bone destruction in inflamed joints (all P < 0.05, Fig. 7g). 
More interestingly, the therapeutic effects produced by 
high-dosage GSZD treatment on inflammation score, 
degree of cartilage damage and bone destruction score 
in inflamed joints in AIA rats did not significantly differ 
from those produced by MTX treatment (Fig. 7).

GSZD treatment partially reverses RA progression 
by targeting the HDAC1–HSP90AA1–NFKB2–IKBKB–TNF‑α 
axis in vitro and in vivo
To reveal the pharmacological mechanisms of GSZD’s 
action on AIA, the expression levels of HDAC1, 

Fig. 6  Effects of GSZD on the severity of arthritis in AIA rats. a Macroscopic evidence of arthritis such as redness or swelling was obviously observed 
in AIA rats of the model group, while doses of 18.6 g/(kg day) GSZD and 0.2 mg/(kg day) MTX significantly reduced the severity of arthritis in 
AIA rats; b Doses of 4.65–18.6 g/(kg day) GSZD and 0.2 mg/(kg day) MTX significantly reduced the mean arthritis score of AIA rats; c Doses of 
4.65–18.6 g/(kg day) GSZD and 0.2 mg/(kg day) MTX significantly reduced the arthritis incidence of AIA rats; d Doses of 4.65–18.6 g/(kg day) GSZD 
and 0.2 mg/(kg day) MTX significantly reduced the percentage of arthritis limbs of AIA rats; e Doses of 9.3 g/(kg day) and 18.6 g/(kg day) GSZD, and 
0.2 mg/(kg day) MTX effectively extended the time of arthritis first appeared of AIA rats. Data are represented as the mean ± SD. #P < 0.05, compari-
son with the normal control (Con). *, **, and ***, P < 0.05, P < 0.01, and P < 0.001, respectively, comparison with the model control (Mod)
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HSP90AA1, NFKB2, IKBKB and TNF-α proteins in the 
inflamed joints of AIA rats and in the human fibroblast-
like synoviocytes-rheumatoid arthritis (HFLS-RA) 
cell line were detected by western blot analysis follow-
ing different treatment protocols. Compared to nor-
mal controls, HDAC1, HSP90AA1, NFKB2, IKBKB and 
TNF-α protein expression were markedly increased in 
the inflamed joints of AIA rats (all P < 0.05, Fig. 8) but 
were efficiently reduced by GSZD treatment. Compared 
with untreated AIA rats, GSZD treatment at doses of 
9.3 and 18.6 g/(kg day) significantly reduced the expres-
sion of HDAC1 (all P  <  0.05, Fig.  8a) and HSP90AA1 
(all P  <  0.05, Fig.  8b). Notably, the administration of 
GSZD markedly and dose-dependently decreased the 
expression levels of NFKB2, IKBKB and TNF-α pro-
teins (all P  <  0.05, Fig.  8c–e). More importantly, these 
findings were consistent with the results from in  vitro 

experiments performed on cultured HFLS-RA, as shown 
in Fig. 9.

Innate immune responses in the rheumatoid synovium 
contribute to inflammation and joint destruction in RA 
[50]. NFKB2, IKBKB and TNF-α have recently been 
identified to play crucial roles in this chronic inflam-
mation of synovial joint linings, which has initiated the 
development of a series of targeted and highly effective 
therapeutics for RA. Mammalian HDACs can be divided 
into two classes: class I HDACs (HDACs 1, 2, 3, 8), which 
are homologues of yeast PRD3, and class II HDACs 
(HDACs 4–7 and 9), which are homologues of yeast 
Hda1 [51]. It has been reported that HDAC1 activity and 
expression are dramatically increased in RA synovial tis-
sues compared to normal tissues and are upregulated 
by TNF-α stimulation in RASFs, suggesting the need to 
develop HDAC1 inhibitors for the treatment of RA [52]. 

Fig. 7  Effect of GSZD on histologic lesions of AIA rats. a Inflammatory changes observed in different groups using H & E staining (×200); b Articular 
cartilage changes observed in different groups using H & E staining (×200); c Cartilage changes observed in different groups using toluidine blue 
staining; (×200); d Bone destruction changes observed in different groups using H & E staining (×200); e–g showed the inflammation score, the 
bone destruction score and the loss of toluidine blue staining in joints respectively, calculated as described in “Methods” section. Data are repre-
sented as the mean ± SD. *, **, and ***, P < 0.05, P < 0.01, and P < 0.001, respectively, in contrast with the model control (Mod)
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HSP90AA1, a chaperone family member, functions to 
guide the late-stage tertiary folding of numerous pro-
teins [53]. HSP90AA1 guides the folding of NF-kappa 
B signaling pathway members, such as receptor-inter-
acting protein and IKK, which can be degraded fol-
lowing HSP90AA1 inhibition, blocking NF-kappa B 
signaling pathway activation and causing a subsequent 
loss of cytokine production in macrophages and other 
cell types [54]. Thus, accumulating evidence suggests 
that an HSP90AA1-targeted agent would be useful in the 
treatment of inflammatory diseases, including RA. Here, 
we employed in vivo and in vitro experimental validation 
to demonstrate that GSZD ameliorates the upregulation 
of HDAC1, HSP90AA1, NFKB2, IKBKB, and TNF-α, in 
line with its role in reducing synovial inflammation and 
preventing cartilage destruction during RA progression.

Conclusions
In the current study, we integrated drug target predic-
tion and network analysis to assess the multiple ingredi-
ents and putative targets of GSZD, a TCM-based herbal 
formula, which enabled us to clarify its pharmacological 

actions on RA. Our network analysis inferred associa-
tions between candidate targets of the herbs contained 
in GSZD and components in the pathological processes 
of RA and discerned key essential mechanisms of the 
formula. Furthermore, in  vitro and in  vivo experimen-
tal validation offered convincing evidence that GSZD 
may partially attenuate RA by reversing inflammation-
immune system imbalance and regulating the HDAC1–
HSP90AA1–NFKB2–IKBKB–TNF-α signaling axis.

Although there are important discoveries revealed by 
this study, there are also limitations. First, some compos-
ite compounds of herbs contained in GSZD might have 
been omitted due to incomplete information obtained 
from existing databases. Second, this work could not 
determine whether the identified associations between 
the studied herbs and their corresponding targets were 
direct or indirect. Third, since each data source used here 
may have its own set of constraints, biases or limitations, 
etc., which might impact the final results; However, we 
did not adequate to define these characteristics before 
data integration and data mining. Thus, more studies will 
be required in the future.

Fig. 8  Effect of GSZD on the expression of HDAC1 (a), HSP90AA1 (b), NFKB2 (c), IKBKB (d) and TNF-α (e) proteins in the joint of AIA rats detected 
by Western blot analysis. Data are represented as the mean ± SD. # and ##, P < 0.05 and P < 0.01, respectively comparison with the normal control 
(Con). * and **, P < 0.05 and P < 0.01, respectively, comparison with the model control (Mod)
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