5 research outputs found

    Effect of Osmotic Dehydration Under High HydrostaticPressure on Microstructure, Functional Propertiesand Bioactive Compounds of Strawberry (Fragaria Vesca)

    Get PDF
    Sliced strawberries were subjected to combined osmotic dehydration (40 °Brix) and high hydrostatic pressure (HHP) at 100, 200, 300, 400 and 500 MPa for 10 min. This research was carried out to study the effects of pressure on firmness, polysaccharides, total dietary fibre and microstructure, functional properties (rehydration ratio and water holding capacity) and bioactive compounds (anthocyanins, flavonoid and total phenolic). HHP affected the texture of the fruits leading to soft fruits due to increasing pressure. Fruit microstructure evidenced influence of pressure presenting the pressurised samples irregular matrices compared to samples treated at 0.1 MPa (control samples). Polysaccharides increased with pressure. Total dietary fibre, anthocyanins, flavonoids and total phenolic content showed a decrease with pressure when compared to control samples.The authors gratefully acknowledge the Research Department of Universidad de La Serena, Chile for providing financial support to this investigation.Nunez-Mancilla, Y.; Vega-Galvez, A.; Perez-Won, M.; Zura, L.; GarcĂ­a Segovia, P.; Di Scala, KC. (2014). Effect of Osmotic Dehydration Under High HydrostaticPressure on Microstructure, Functional Propertiesand Bioactive Compounds of Strawberry (Fragaria Vesca). Food and Bioprocess Technology. 7:516-524. doi:10.1007/s11947-013-1052-5S5165247Al-Khuseibi, M. K., Sablani, S. S., & Perera, C. O. (2005). Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and quality of potato. Drying Technology, 23(12), 2449–2461.Association of Official Analytical Chemists (AOAC). (1990). Oficial method of AnĂĄlisis, Association of Oficial analytical Chemists nÂș 934.06., (15th edition), Arlington, MA, Washington.Basak, S., & Ramashamy, H. (1998). Effect of high pressure processing on the textural of selected fruit and vegetables. Journal Texture Study, 29, 587–601.Bomben, J. L., & King, C. J. (1982). Heat and mass transport in the freezing of apple tissue. Journal of Food Technology, 17, 615–632.Cheel, J., Theoduloz, C., Rodriguez, J. A., Caligari, P. D. S., & Schmeda-Hirschmann, G. (2007). Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chilensis ssp. Chilensis, F. vesca and F. x ananassa cv. Chandler. Food Chemistry, 102, 36–44.Chiralt, A., & Talens, P. (2005). Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67, 167–177.Chuah, A. M., Lee, Y.-C., Yamaguchi, T., Takamura, H., Yin, L. J., & Matoba, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111, 20–28.Da Silva, P. M., Lajolo, F. M., & Genovese, M. I. (2008). Bioctive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107, 1629–1635.Del-Valle, V., Hernandez-Muñoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia Picus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91, 751–756.Di Scala, K., Vega-GĂĄlvez, A., Uribe, E., Oyanadel, R., Miranda, M., Vergara, J., et al. (2011). Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. International Journal of Food Science and Technology, 46, 746–753.El-Beltagy, A., Gamea, G. R., & Amer Essa, A. H. (2007). Solar drying characteristics of strawberry. Journal of Food Engineering, 78, 456–464.Fraeye, I., Knockaert, G., Van Buggenhout, S., Duvetter, T., Hendrickx, M., & Van Loey, A. (2010). Enzyme infusion prior to thermal/high pressure processing of strawberries: mechanistic insight into firmness evolution. Innovative Food Science and Emerging Technologies, 11, 23–31.Garcia, L. C., Pereira, L. M., De Luca Sarantopoulos, C. I. G., & Hubinger, M. D. (2010). Selection of an edible starch coating for minimally processed strawberry. Food Bioprocess Technology, 3, 834–842.Hu, Y., Xu, J., & Hu, Q. (2003). Evaluation of antioxidant potencial of aloe vera (Aloe barbadensis Miller) extract. Journal Agriculture Food Chemistry, 51, 7788–7791.Kafkas, E., Kosar, M., Paydas, S., Kafkas, S., & Baser, K. H. C. (2007). Quality characteristics of strawberry genotypes at different maturation stages. Food Chemistry, 100, 1229–1236.Kasapis, S., & Sablani, S. (2008). The effect of pressure on the structural properties of biopolymer/co-solute Part II: The example of gelling polysaccharides. Carbohydrate Polymers, 72(3), 537–544.Keenan, D. F., Brunton, N. P., Gormley, T. R., Butter, F., Tiwari, B. K., & Patras, A. (2010). Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruits smoothies. Innovative Food Science and Emerging Technologies, 11, 551–556.Kingsly, A. R. P., Balasubramaniam, V. M., & Rastogi, N. K. (2007). Effect of high-pressure processing on texture and drying behavior of pineapple. Journal of Food Process Engineering, 32(3), 369–381.Liu, M., Li, X. Q., Weber, C., Lee, C. Y., Brown, J., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of raspberries. Journal Agriculture Food Chemistry, 50, 2926–2930.Mateos-Aparicio, I., Mateos-Peinado, C., & RupĂ©rez, P. (2010). High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Science and Emerging Technologies, 11, 445–450.Moraga, G., Martınez-Navarrete, N., & Chiralt, A. (2004). Water sorption isotherms and glass transition in strawberries: influence of pretreatment. Journal of Food Engineering, 62, 315–321.Moreno, J., Simpson, R., Baeza, A., Morales, J., Muñoz, C., Sastry, S., et al. (2012). Effect of ohmic heating and vacuum impregnation on the osmodehydration kinetics and microstructure of strawberries (cv. Camarosa). LWT-. Food Science and Technology, 45, 148–154.Nuñez-Mancilla, Y., Perez-Won, M., Vega-GĂĄlvez, A., Arias, V., Tabilo-Munizaga, G., Briones-Labarca, V., et al. (2011). Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innovative Food Science and Emerging Technologies, 12(3), 338–343.Nuñez-Mancilla, Y., Perez-Won, M., Vega-GĂĄlvez, A., Uribe, E., & Di, Scala, K. (2012). Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT—Food Science and Technology. doi: 10.1016/j.lwt.2012.02.027 .Odriozola-Serrano, I., Soliva-Fortuny, R., & MartĂ­n-Belloso, O. (2009). Impacto of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT- Food Science and Technology, 42, 93–100.Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high pressure processing on colour, texture and flavour of fruit and vegetable-based food products: a review. Trends in Food Science and Technology, 19, 320–328.Ozcan, M. M., & Haciseferogullari, H. (2007). The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. Journal of Food Engineering, 78, 1022–1028.Pallauf, K., Rivas-Gonzalo, J. C., Del Castillo, M. D., Cano, M. P., & De Pascual-Teresa, S. (2008). Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. Journal of Food Composition and Analysis, 21, 273–281.Patras, A., Brunton, N. P., Tiwari, B. K., & Butler, F. (2011). Stability and degradation kinetic of bioactive compounds and colour in strawberry jam during storage. Journal Food Bioprocess Technology, 4, 1245–1252.Patras, A., Brunton, N. P. K., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innovative Food Science and Emerging Technologies, 10, 308–313.PĂ©rez-Vicente, A., Serrano, P., AbellĂĄn, P., & GarcĂ­a-Viguera, C. (2004). Influence of packaging material on pomegranate juice colour and bioctive compounds, during storage. Journal of the Science of Food and Agriculture, 84, 639–644.Prasad, K. N., Yang, B., Dong, X., Jiang, G., Zhang, H., Xie, H., et al. (2009). Flavonoid contents and antioxidant activities from Cinnamomum species. Innovative Food Science and Emerging Technologies, 10, 627–632.Quaglia, G. B., Gravina, R., Paperi, R., & Paoletti, F. (1996). Effect of high pressure treatment on peroxidase activity, ascorbic acid content and texture in green peas. LWT- Food Science and Technolgy, 29, 552–555.Ramulu, P., & Rao, P. U. (2003). Total, insoluble and soluble dietary fibre contents of Indian fruits. Journal of Food Composition and Analysis, 16, 677–685.Rastogi, N. K., Angersbach, A., & Knorr, D. (2000). Synergistic effect of high hydrostatic pressure pre-treatment and osmotic stress on mass transfer during osmotic dehydration. Journal of Food Engineering, 45, 25–31.Rastogi, N.K., (2010). Effect of high pressure on textural and microstructural properties of fruits and vegetables. In: Novel Food Processing. Effects on reological and functional properties.CRC, New York.SeguĂ­, L., Fito, P. J., & Fito, P. (2013). A study on the rehydration ability of isolated apple cells after osmotic dehydration treatments. Journal of Food Engineering, 115, 145–153.Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effect on quality, total ascorbic acid, phenolic and flaonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45, 349–357.Tangwongchai, R., Ledward, D. A., & Ames, J. A. (2000). Effect of high pressure treatment on the texture of cherry tomato. Journal of Agriculture and Food Chemistry, 48, 1434–41.Tokusoglu, O., Alpas, H., & Bozoglu, F. (2010). High hydrostatic pressure effect on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolic and antioxidant activity of black table olives. Innovative Food Science and Emerging Technologies, 11, 250–258.Trejo-Araya, X. I., Hendrickx, M., Verlinden, B. E., Van Buggenhout, S., Smale, N. J., Stewart, C., et al. (2007). Understanding textureof high pressure processed fresh carrots: a microstructural and biochemical approach. Journal of Food Engineering, 80, 873–884.Van Buggenhout, S., Grauwet, T., Van Loey, A., & Hendrickx, M. (2007). Effect of high-pressure induced ice I/ice III-transition on the texture and microstructure of fresh and pretreated carrots and strawberries. Food Research International, 40, 1276–1285.Wennberg, M., & Nyman, M. (2004). On the possibility of using high pressure treatment to modify physico-chemical properties of dietary fibre in white cabbage (Brassica oleraceae var. capitata). Innovative Food Science and Emerging Technologies, 5, 171–177.Yang, B., Jiang, Y., Wang, R., Zhao, M., & Sun, J. (2009). Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit pericarp. Food Chemistry, 112, 428–431.Zheng, Y., Wang, S. Y., Wang, C. Y., & Zheng, W. (2007). Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT- Food Science and Technology, 40, 49–57.Zura-Bravo, L., Vega-GĂĄlvez, A., Lemus-Mondaca, R., Kong Shun, A.-H., & Di Scala, K. (2011). Effect of temperature on rehydration kinetics, functional properties, texture and antioxidant activity of red pepper var hungarian (Capsicum Annuum L.). Journal of Food Processing and Preservation. doi: 10.1111/j.1745-4549.2011.00623.x

    Microstructural and Physiological Changes in Plant Cell Induced by Pressure: Their Role on the Availability and Pressure-Temperature Stability of Phytochemicals

    No full text
    corecore