60 research outputs found

    Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films

    Get PDF
    We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film

    Development of a Humanized HLA-A2.1/DP4 Transgenic Mouse Model and the Use of This Model to Map HLA-DP4-Restricted Epitopes of HBV Envelope Protein

    Get PDF
    A new homozygous humanized transgenic mouse strain, HLA-A2.1+/+HLA-DP4+/+ hCD4+/+mCD4−/−IAβ−/−β2m−/− (HLA-A2/DP4), was obtained by crossing the previously characterized HLA-A2+/+β2m−/− (A2) mouse and our previously created HLA-DP4+/+ hCD4+/+mCD4−/−IAβ−/− (DP4) mouse. We confirmed that the transgenes (HLA-A2, HLA-DP4, hCD4) inherited from the parental A2 and DP4 mice are functional in the HLA-A2/DP4 mice. After immunizing HLA-A2/DP4 mice with a hepatitis B DNA vaccine, hepatitis B virus-specific antibodies, HLA-A2-restricted and HLA-DP4-restricted responses were observed to be similar to those in naturally infected humans. Therefore, the present study demonstrated that HLA-A2/DP4 transgenic mice can faithfully mimic human cellular responses. Furthermore, we reported four new HLA-DP4-restricted epitopes derived from HBsAg that were identified in both vaccinated HLA-A2/DP4 mice and HLA-DP4-positive human individuals. The HLA-A2/DP4 mouse model is a promising preclinical animal model carrying alleles present to more than a quarter of the human population. This model should facilitate the identification of novel HLA-A2- and HLA-DP4-restricted epitopes and vaccine development as well as the characterization of HLA-DP4-restricted responses against infection in humans

    Significance of the secondary pores in perthite for oil storage and flow in tight sandstone reservoir

    No full text
    Perthite is a special type of skeleton mineral in tight oil sandstone which cannot be ignored. However, few attention was paid to the secondary pores in perthite and their contributions in tight oil reservoir. This study reveals the perthite&#39;s significance in unconventional oil flow characterizes comprehensively and quantitative) by combining the Field Emission Scanning Electron Microscope (FE-SEM) with high resolution, Energy Dispersive Spectrometer (EDS) analysis, high precision image processing, comprehensive parameters construction and calculation. Typical perthite samples of Chang 7 tight oil reservoir of Ordos basin were selected for this study. Our results demonstrate that the growth of K-feldspar and Na-feldspar in perthite is complementary. The mixing process of the two types of stripes promotes each other rather than inhibiting each other. As to the development of secondary pores of perthite, there are clear differences in the area and number of pores, medium differences in the porosity, radius and perimeter, and small differences in other parameters. The more regular and uniform growth of Na-feldspar, the more likely the perthite is to form regular and normalized secondary pore. At least 56.7% of the secondary pore of perthite contributes to oil flow in the process of oil migration or development, and its scientific significance cannot be ignored. The conclusion could provide the geological basis for the effective development of the unconventional hydrocarbon reservoirs.</p

    Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway

    No full text
    Xing Zhu,1,* Hao Wang,2,* Longbin Zheng,1 Zhaoyu Zhong,1 Xuesong Li,1 Jing Zhao,3 Jiayuan Kou,1 Yueqing Jiang,1 Xiufeng Zheng,1 Zhongni Liu,1 Hongxia Li,1 Wenwu Cao,4,5 Ye Tian,1,6 You Wang,2 Liming Yang1 1Department of Pathophysiology, Harbin Medical University, Harbin, People&rsquo;s Republic of China; 2Materials Physics and Chemistry Department, Harbin Institute of Technology, Harbin, People&rsquo;s Republic of China; 3Blood Transfusion Department, Jining No 1 People&rsquo;s Hospital, Jining, People&rsquo;s Republic of China; 4Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, People&rsquo;s Republic of China; 5Materials Research Institute, The Pennsylvania State University, University Park, PA, USA; 6Division of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, People&rsquo;s Republic of China *These authors contributed equally to this work Abstract: Atherosclerosis (AS) is the most vital cardiovascular disease, which poses a great threat to human health. Macrophages play an important role in the progression of AS. Photodynamic therapy (PDT) has emerged as a useful therapeutic modality not only in the treatment of cancer but also in the treatment of AS. The purpose of this study was to determine the molecular mechanisms underlying the activity of PDT, using mesoporous-silica-coated upconversion fluorescent nanoparticles encapsulating chlorin e6 (UCNPs-Ce6) in the induction of apoptosis in THP-1 macrophages. Here, we investigated the ability of UCNPs-Ce6-mediated PDT to induce THP-1 macrophage apoptosis by facilitating the induction of reactive oxygen species (ROS) and regulation of mitochondrial permeability transition pore (MPTP) to depolarize mitochondrial membrane potential (MMP). Both Bax translocation and the release of cytochrome C were examined using immunofluorescence and Western blotting. Our results indicated that the levels of ROS were significantly increased in the PDT group, resulting in both MPTP opening and MMP depolarization, which led to apoptosis. In addition, immunofluorescence and Western blotting revealed that PDT induced both Bax translocation and the release of cytochrome C, as well as upregulation of cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase. Therefore, we demonstrated that UCNPs-Ce6-mediated PDT induces apoptosis in THP-1 macrophages via ROS bursts. The proapoptotic factor Bax subsequently translocates from the cytosol to the mitochondria, resulting in the MPTP opening and cytochrome C release. This study demonstrated the great potential of UCNPs-Ce6-mediated PDT in the treatment of AS. Keywords: atherosclerosis, photodynamic therapy, fluorescent nanoparticles, reactive oxygen species, apoptosis, macrophage

    Critical analysis of proximity-induced magnetism in MnTe / Bi2 Te3 heterostructures

    No full text
    An elegant approach to overcome the intrinsic limitations of magnetically doped topological insulators is to bring a topological insulator in direct contact with a magnetic material. The aspiration is to realize the quantum anomalous Hall effect at high temperatures where the symmetry-breaking magnetic field is provided by a proximity-induced magnetization at the interface. Hence, a detailed understanding of the interfacial magnetism in such heterostructures is crucial, yet its distinction from structural and magnetic background effects is a rather nontrivial task. Here, we combine several magnetic characterization techniques to investigate the magnetic ordering in MnTe/Bi2Te3 heterostructures. A magnetization profile of the layer stack is obtained using depth-sensitive polarized neutron reflectometry. The magnetic constituents are characterized in more detail using element-sensitive magnetic x-ray spectroscopy. Magnetotransport measurements provide additional information about the magnetic transitions. We find that the supposedly antiferromagnetic MnTe layer does not exhibit an x-ray magnetic linear dichroic signal, raising doubt that it is in its antiferromagnetic state. Instead, Mn seems to penetrate into the surface region of the Bi 2 Te 3 layer. Furthermore, the interface between MnTe and Bi 2 Te 3 is not abrupt, but extending over ∼ 2.2 nm. These conditions are the likely reason that we do not observe proximity-induced magnetization at the interface. Our findings illustrate the importance of not solely relying on one single technique as proof for proximity-induced magnetism at interfaces. We demonstrate that a holistic, multitechnique approach is essential to gain a more complete picture of the magnetic structure in which the interface is embedded

    Electronic and Mechanical Coupling in Bent ZnO Nanowires

    No full text
    A red shift of the exciton of ZnO nanowires is efficiently produced by bending strain, as demonstrated by a low-temperature (81 K) cathodoluminescence (CL) study of ZnO nanowires bent into L- or S-shapes. The figure shows a nanowire (Fig. a) with the positions of CL measurements marked. The corresponding CL spectra-revealing a peak shift and broadening in the region of the bend-are shown in Figure
    corecore