209 research outputs found

    Direct Dark Matter Searches with CDMS and XENON

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) and XENON experiments aim to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering on the target nuclei. The experiments use different techniques to suppress background event rates to the minimum, and at the same time, to achieve a high WIMP detection rate. The operation of cryogenic Ge and Si crystals of the CDMS-II experiment in the Soudan mine yielded the most stringent spin-independent WIMP-nucleon cross-section (~10^{-43} cm^2) at a WIMP mass of 60 GeV/c^2. The two-phase xenon detector of the XENON10 experiment is currently taking data in the Gran Sasso underground lab and promising preliminary results were recently reported. Both experiments are expected to increase their WIMP sensitivity by a one order of magnitude in the scheduled science runs for 2007.Comment: appears in the proceedings of the 36th COSPAR Scientific Assembly in Beijing, July 200

    ArDM: a ton-scale liquid Argon experiment for direct detection of Dark Matter in the Universe

    Full text link
    The ArDM project aims at developing and operating large noble liquid detectors to search for direct evidence of Weakly Interacting Massive Particle (WIMP) as Dark Matter in the Universe. The initial goal is to design, assemble and operate a ≈\approx1 ton liquid Argon prototype to demonstrate the feasibility of a ton-scale experiment with the required performance to efficiently detect and sufficiently discriminate backgrounds for a successful WIMP detection. Our design addresses the possibility to detect independently ionization and scintillation signals. In this paper, we describe this goal and the conceptual design of the detector.Comment: 5 pages, 3 figures, Talk given at IXth international conference on Topics in Astroparticle and Underground Physics (TAUP05), Zaragoza, (Spain

    The neutron background of the XENON100 dark matter experiment

    Get PDF
    TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment

    Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon

    Get PDF
    Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detector gives a high light yield of 6 photoelectron per keV (pe/keV), which allows efficient detection of the 122 keV gamma-ray line from Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best achievable energy resolution, by removing the instrumental fluctuations, from liquid xenon scintillation light is estimated to be around 6-8% (sigma) for gamma-ray with energy between 662 keV and 122 keV

    222Rn emanation measurements for the XENON1T experiment

    Full text link
    The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the 222Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a 222Rn activity concentration of 10μBq/kg in 3.2t of xenon. The knowledge of the distribution of the 222Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the 222Rn activity concentration in XENON1T. The final 222Rn activity concentration of (4.5±0.1)μBq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment

    New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation

    Full text link
    We compute the electromagnetic radiative corrections to all leading annihilation processes which may occur in the Galactic dark matter halo, for dark matter in the framework of supersymmetric extensions of the Standard Model (MSSM and mSUGRA), and present the results of scans over the parameter space that is consistent with present observational bounds on the dark matter density of the Universe. Although these processes have previously been considered in some special cases by various authors, our new general analysis shows novel interesting results with large corrections that may be of importance, e.g., for searches at the soon to be launched GLAST gamma-ray space telescope. In particular, it is pointed out that regions of parameter space where there is a near degeneracy between the dark matter neutralino and the tau sleptons, radiative corrections may boost the gamma-ray yield by up to three or four orders of magnitude, even for neutralino masses considerably below the TeV scale, and will enhance the very characteristic signature of dark matter annihilations, namely a sharp step at the mass of the dark matter particle. Since this is a particularly interesting region for more constrained mSUGRA models of supersymmetry, we use an extensive scan over this parameter space to verify the significance of our findings. We also re-visit the direct annihilation of neutralinos into photons and point out that, for a considerable part of the parameter space, internal bremsstrahlung is more important for indirect dark matter searches than line signals.Comment: Replaced Fig. 2c which by mistake displayed the same spectrum as Fig. 2d; the radiative corrections reported here are now implemented in DarkSUSY which is available at http://www.physto.se/~edsjo/darksusy

    Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

    Full text link
    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431−14+16431^{+16}_{−14} day in the low energy region of (2.0–5.8) keV in the single scatter event sample, with a global significance of 1.9σ\sigma; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8σ\sigma, from a previous analysis of a subset of this data, to 1.8σ\sigma with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7σ\sigma

    Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T

    Full text link
    We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3×10−42  cm2 at 30  GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator

    Scintillation Pulse Shape Discrimination in a Two-Phase Xenon Time Projection Chamber

    Full text link
    The energy and electric field dependence of pulse shape discrimination in liquid xenon have been measured in a 10 gm two-phase xenon time projection chamber. We have demonstrated the use of the pulse shape and charge-to-light ratio simultaneously to obtain a leakage below that achievable by either discriminant alone. A Monte Carlo is used to show that the dominant fluctuation in the pulse shape quantity is statistical in nature, and project the performance of these techniques in larger detectors. Although the performance is generally weak at low energies relevant to elastic WIMP recoil searches, the pulse shape can be used in probing for higher energy inelastic WIMP recoils.Comment: 7 pages, 11 figure
    • …
    corecore