126 research outputs found

    Application of at-line two-dimensional liquid chromatography–mass spectrometry for identification of small hydrophilic angiotensin I-inhibiting peptides in milk hydrolysates

    Get PDF
    A two-dimensional chromatographic method with mass spectrometric detection has been developed for identification of small, hydrophilic angiotensin I-inhibiting peptides in enzymatically hydrolysed milk proteins. The method involves the further separation of the poorly retained hydrophilic fraction from a standard C18 reversed-phase column on a hydrophilic interaction liquid chromatography (HILIC) column. The latter column is specifically designed for the separation of hydrophilic compounds. Narrow fractions collected from the HILIC column were analysed for their angiotensin I-converting enzyme (ACE) inhibiting potential in an at-line assay. Fractions showing significant inhibition of ACE were analysed by LC–MS for structure elucidation. With this method the main peptides responsible for ACE-inhibition in the hydrophilic part of a milk hydrolysate could be determined. The ACE-inhibiting peptides RP, AP, VK, EK, and EW explained more than 85% of ACE-inhibition by the hydrophilic fraction

    Differential modulation of the TRAIL receptors and the CD95 receptor in colon carcinoma cell lines

    Get PDF
    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and CD95 ligand (CD95L) are potent inducers of apoptosis in various tumour cell types. Death receptors DR4 and DR5 can induce and decoy receptors DcR1 and DcR2 can inhibit TRAIL-mediated apoptosis. The study aim was to investigate whether anticancer agents can modulate similarly TRAIL-receptor and CD95 membrane expression and TRAIL and CD95L sensitivity.Three colon carcinoma cell lines (Caco-2, Colo320 and SW948) were treated with 5-fluorouracil (5-FU), cisplatin or interferon-γ. TRAIL-receptor and CD95 membrane expression was determined flow cytometrically. Sensitivity to TRAIL or CD95L agonistic anti-CD95 antibody was determined with cytotoxicity and apoptosis assays. SW948 showed highest TRAIL sensitivity. The protein synthesis inhibitor cycloheximide decreased FLICE-like inhibitory protein levels in all cell lines, and the TRAIL-resistant cell lines Caco-2 and Colo320 became sensitive for TRAIL. Exposure of the cell lines to 5-FU, cisplatin and interferon-γ left TRAIL-receptor membrane expression and TRAIL sensitivity unaffected. CD95 membrane expression and anti-CD95 sensitivity was, however, modulated by the same drugs in all lines. Cisplatin and interferon-γ raised CD95 membrane levels 6–8-fold, interferon-γ also increased anti-CD95 sensitivity. These results indicate that the CD95 and TRAIL pathways use different mechanisms to respond to various anticancer agents. Induced CD95 membrane upregulation was associated with increased anti-CD95 sensitivity, whereas no upregulation of TRAIL-receptor membrane expression or TRAIL sensitisation could be established. For optimal use of TRAIL-mediated apoptosis for cancer therapy in certain tumours, downregulation of intracellular inhibiting factors may be required

    Search for the standard model Higgs boson at LEP

    Get PDF

    RNAi as an emerging approach to control Fusarium Head Blight disease and mycotoxin contamination in cereals

    Get PDF
    Fusarium graminearum is a major fungal pathogen of cereals worldwide, causing seedling, stem base and floral diseases, including Fusarium head blight (FHB). In addition to yield and quality losses, FHB contaminates cereal grain with mycotoxins, including deoxynivalenol, which are harmful to human, animal and ecosystem health. Currently, FHB control is only partially effective due to several intractable problems. RNA interference (RNAi) is a natural mechanism that regulates gene expression. RNAi has been exploited in the development of new genomic tools that allow the targeted silencing of genes of interest in many eukaryotes. Host‐induced gene silencing (HIGS) is a transgenic technology used to silence fungal genes in planta during attempted infection and thereby reduces disease levels. HIGS relies on the host plant's ability to produce mobile small interfering RNA molecules, generated from long double‐stranded RNA, which are complementary to targeted fungal genes. These molecules are transferred from the plant to invading fungi via an uncharacterised mechanism, to cause gene silencing. Here, we describe recent advances in RNAi‐mediated control of plant pathogenic fungi, highlighting the key advantages and disadvantages. We then discuss the developments and implications of combining HIGS with other methods of disease control

    Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications

    Get PDF

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore