9 research outputs found

    Evidence of postprandial absorption of olive oil phenols in humans

    No full text
    BACKGROUND AND AIM: Olive oil phenols are potent antioxidants in vitro. If this were to be also demonstrated in vivo, it would help to explain the beneficial effects of this typical ingredient of the Mediterranean diet. This study was designed to determine the presence in lipoprotein fractions of two phenolic compounds peculiar to extra virgin olive oil, namely tyrosol and OH-tyrosol, and whether their absorption induces an antioxidant effect in vivo. METHODS AND RESULTS: Two trials were performed. In the first (Long-term), 14 healthy volunteers followed two diets, each for one month. The only difference between the diets was that the first supplied 50 g of extra virgin olive oil per day, where-as the second one supplied 50 g of refined olive oil with no simple phenols, as demonstrated by GC-MS analysis. There were no changes in LDL oxidizability and tyrosol and OH-tyrosol were not recovered in lipoproteins and plasma from fasting samples drawn at the end of each diet period. In the second study (Postprandial), eight healthy volunteers received an oral fat load consisting of 100 g of extra virgin olive oil. Blood was drawn at times 0', 30', 60', 120', 240', 360', and major plasma lipoprotein classes were separated. The concentration of tyrosol, OH-tyrosol and vitamin E was determined in lipoprotein fractions. Plasma antioxidant capacity was measured by a crocin-bleaching test and expressed as mM Trolox C equivalents. Tyrosol and OH-tyrosol were recovered in all lipoprotein fractions, except VLDL, with concentrations peaking between 60' and 120'. However, a very high variability in tyrosol and OH-tyrosol absorption was observed among subjects. Vitamin E content of LDL and HDL did not vary significantly throughout the study. Plasma antioxidant capacity increased significantly at time 120' (baseline 0.96 mM Trolox; 120' 1.19 mM Trolox; p = 0.02), and then returned almost to baseline values after 360' (1.1 mM Trolox). CONCLUSIONS: These findings suggest that phenolic compounds in olive oil are absorbed from the intestine, though not through a pathway dependent on chylomicron formation, and may exert a significant antioxidant effect in vivo, probably in the postprandial phas

    New risk factors related with genetic background

    No full text

    Estimating the integrity of aged DNA samples by CE

    No full text
    A CE/UV method was developed to separate by a micellar system the four DNA bases and other five purinic-pyrimidinic compounds (5-methyl-cytosine, uracil, xanthyne, hypoxanthyne and 5-bromo-uracil). Selectivity, precision, accuracy and sensitivity were assessed and proved to be suitable for the analysis of the primary structure of DNA. This method was adopted to study 16 aged samples including two Egyptian mummies, formaldehyde-fixed paraffin-embedded tissues and other forensic specimens. Lower relative values of the four canonical unmodified DNA bases (uDNAb) and more complex pherograms were found in the aged samples when compared with the modern controls. The results of the CE analysis, together with those obtained by classical molecular methods (agarose gel electrophoresis, DNase I and RNase A assays, and UV spectrophotometry), were finally evaluated for assessing the reliability of STR typing. Since samples with low uDNAb showed no amplification or unreliable STR profiles, the uDNAb value is discussed as a further quality criterion in the evaluation of the genetic data obtained from aged samples

    Estimating the integrity of aged DNA samples by CE

    No full text
    A CE/UV method was developed to separate by a micellar system the four DNA bases and other five purinic–pyrimidinic compounds (5-methyl-cytosine, uracil, xanthyne, hypoxanthyne and 5-bromo-uracil). Selectivity, precision, accuracy and sensitivity were assessed and proved to be suitable for the analysis of the primary structure of DNA. This method was adopted to study 16 aged samples including two Egyptian mummies, formaldehyde-fixed paraffin-embedded tissues and other forensic specimens. Lower relative values of the four canonical unmodified DNA bases (uDNAb) and more complex pherograms were found in the aged samples when compared with the modern controls. The results of the CE analysis, together with those obtained by classical molecular methods (agarose gel electrophoresis, DNase I and RNase A assays, and UV spectrophotometry), were finally evaluated for assessing the reliability of STR typing. Since samples with low uDNAb showed no amplification or unreliable STR profiles, the uDNAb value is discussed as a further quality criterion in the evaluation of the genetic data obtained from aged samples
    corecore