1,260 research outputs found
A simple derivation of level spacing of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter
In this paper, we investigate analytically the level space of the imaginary
part of quasinormal frequencies for a black hole with a deficit solid angle and
quintessence-like matter by the Padmanabhan's method \cite{Padmanabhan}.
Padmanabhan presented a method to study analytically the imaginary part of
quasinormal frequencies for a class of spherically symmetric spacetimes
including Schwarzschild-de Sitter black holes which has an evenly spaced
structure. The results show that the level space of scalar and gravitational
quasinormal frequencies for this kind of black holes only depend on the surface
gravity of black-hole horizon in the range of -1 < w < -1/3, respectively . We
also extend the range of to , the results of which are similar
to that in -1 < w < -1/3 case. Particularly, a black hole with a deficit solid
angle in accelerating universe will be a Schwarzschild-de Sitter black hole,
fixing and . And a black hole with a deficit solid
angle in the accelerating universe will be a Schwarzschild black hole,when
and . In this paper, is the parameter of state
equation, is a parameter relating to a deficit solid angle and
is the density of static spherically symmetrical quintessence-like
matter at .Comment: 6 pages, Accepted for publication in Astrophysics & Space Scienc
Global Monopole in Asymptotically dS/AdS Spacetime
In this paper, we investigate the global monopole in asymptotically dS/Ads
spacetime and find that the mass of the monopole in the asymptotically dS
spacetime could be positive if the cosmological constant is greater than a
critical value. This shows that the gravitational field of the global monopole
could be attractive or repulsive depending on the value of the cosmological
constant.Comment: 5 pages, 1 figure, to appear in Phys. Rev.
Attractor Solution of Phantom Field
In light of recent study on the dark energy models that manifest an equation
of state , we investigate the cosmological evolution of phantom field in
a specific potential, exponential potential in this paper. The phase plane
analysis show that the there is a late time attractor solution in this model,
which address the similar issues as that of fine tuning problems in
conventional quintessence models. The equation of state is determined by
the attractor solution which is dependent on the parameter in the
potential. We also show that this model is stable for our present observable
universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is
the final version to match the published versio
Fermionic Casimir effect with helix boundary condition
In this paper, we consider the fermionic Casimir effect under a new type of
space-time topology using the concept of quotient topology. The relation
between the new topology and that in Ref. \cite{Feng,Zhai3} is something like
that between a M\"obius strip and a cylindric. We obtain the exact results of
the Casimir energy and force for the massless and massive Dirac fields in the
()-dimensional space-time. For both massless and massive cases, there is a
symmetry for the Casimir energy. To see the effect of the mass, we
compare the result with that of the massless one and we found that the Casimir
force approaches the result of the force in the massless case when the mass
tends to zero and vanishes when the mass tends to infinity.Comment: 7 pages, 4 figures, published in Eur. Phys. J.
Particle Motion Around Tachyon Monopole
Recently, Li and Liu have studied global monoole of tachyon in a four
dimensional static space-time. We analyze the motion of massless and massive
particles around tachyon monopole. Interestingly, for the bending of light rays
due to tachyon monopole instead of getting angle of deficit we find angle of
surplus. Also we find that the tachyon monopole exerts an attractive
gravitational force towards matter.Comment: 14 pages, 7 figure
Rapid analysis of pyrethroid insecticides in aquaculture seawater samples via membrane-assisted solvent extraction coupled with gas chromatography-electron capture detection
A simple, efficient, and environmentally friendly membrane-assisted solvent extraction (MASE) method for the extraction and preconcentration of six pyrethroid insecticides from aquaculture seawater samples followed by gas chromatography-electron capture detection (GC-ECD) was successfully proposed. The operating conditions for MASE, such as the extraction solvent, solvent volume, NaCl concentration, stirring rate, extraction time, and temperature, were optimized. Compared to conventional Florisil-solid phase extraction (SPE), higher extraction recoveries (85.9% to 105.9%) of three spiked levels of the six pyrethroid pesticides in aquaculture seawater were obtained using MASE, and the RSD values were lower than 7.9%. The limits of detection (LOD, signal-to-noise ratio (S/N)=3) and quantification (LOQ, S/N = 10) were in the range of 0.037–0.166 and 0.12–0.55 µg L-1, respectively. The results demonstrate the excellent applicability of the MASE method in analyzing the six pyrethroid pesticides in aqueous samples. The proposed method exhibited a high potential for routine monitoring analysis of pyrethroid insecticides in seawater samples
Neutron/proton ratio of nucleon emissions as a probe of neutron skin
The dependence between neutron-to-proton yield ratio () and neutron
skin thickness () in neutron-rich projectile induced reactions is
investigated within the framework of the Isospin-Dependent Quantum Molecular
Dynamics (IQMD) model. The density distribution of the Droplet model is
embedded in the initialization of the neutron and proton densities in the
present IQMD model. By adjusting the diffuseness parameter of neutron density
in the Droplet model for the projectile, the relationship between the neutron
skin thickness and the corresponding in the collisions is obtained.
The results show strong linear correlation between and
for neutron-rich Ca and Ni isotopes. It is suggested that may be used
as an experimental observable to extract for neutron-rich nuclei,
which is very significant to the study of the nuclear structure of exotic
nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.
On the Crystalline Approximants of the Al-Mn, Al-Pd and Al-Mn-Pd Type Decagonal Quasicrystals
On the basis of atomic clusters of decagonal quasicrystals, subunits of decagonal quasicrystals are proposed as the results of aggregation of the atomic clusters. The structure of the crystalline approximants can be characterized as some simple periodic tiling of the subunits. This is shown as a new approach to study the structure of the new crystalline approximants
Cosmological Evolution of a Tachyon-Quintom Model of Dark Energy
In this work we study the cosmological evolution of a dark energy model with
two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables
the equation of state to change from to in the evolution of
the universe. The phase-space analysis for such a system with inverse square
potentials shows that there exists a unique stable critical point, which has
power-law solutions. In this paper, we also study another form of
tachyon-quintom model with two fields, which voluntarily involves the
interactions between both fields.Comment: 17 pages, 10 figure
System-size scan of dihadron azimuthal correlations in ultra-relativistic heavy ion collisions
System-size dependence of dihadron azimuthal correlations in
ultra-relativistic heavy ion collision is simulated by a multi-phase transport
model. The structure of correlation functions and yields of associated
particles show clear participant path-length dependences in collision systems
with a partonic phase. The splitting parameter and root-mean-square width of
away-side correlation functions increase with collision system size from
N+N to Au+Au collisions. The double-peak
structure of away-side correlation functions can only be formed in sufficient
"large" collision systems under partonic phase. The contrast between the
results with partonic phase and with hadron gas could suggest some hints to
study onset of deconfinment.Comment: 8 pages, 4 figures, 1 table; Nucl. Phys. A (accepted
- …
