631 research outputs found
Effects of Scratching Parameters on Fabrication of Polymer Nanostructures in Atomic Force Microscope Tapping Mode
AbstractThe nano scratching with an oscillating Atomic Force Microscopy (AFM) tip in tapping mode is called as the dynamic ploughing. The tip is vibrated in a high frequency and scratches the surface which is similar to the conventional vibration-assistant machining process. In the present study, the dynamic ploughing technique is utilized to scratch PolymethylMethacrylate (PMMA) polymer surfaces forming nanostructures with a commercial AFM system and two kinds of cantilevers. Effects of scratching parameters of the dynamic ploughing including scratching velocity, driving amplitude, pitch and the cantilever's elastic constant on the machined results are studied in detail. Finally nano ring structures with different radius are achieved successfully.Video abstrac
Sodium ion storage in reduced graphene oxide
The performance of few-layered metal-reduced graphene oxide (RGO) as a negative electrode material in sodium-ion battery was investigated. Experimental and simulation results indicated that the as-prepared RGO with a large interlayer spacing and disordered structure enabled significant sodium-ion storage, leading to a high discharge capacity. The strong surface driven interactions between sodium ions and oxygen-containing groups and/or defect sites led to a high rate performance and cycling stability. The RGO anode delivered a discharge capacity of 272 mA h g(-1) at a current density of 50mAg(-1), a good cycling stability over 300 cycles and a superior rate capability. The present work provides new insights into optimizing RGOs for high-performance and low-cost sodium-ion batteries. (C) 2016 Elsevier Ltd. All rights reserved
Construction and Verification of the Constitutive Model of Pure Copper Deformation at Elevated Temperatures
The deformation behavior of pure copper was studied in hot compression tests in the temperature range of 773–1173 K and strain rate interval of 0.001–1.0 s⁻¹, the corresponding flow stress curves were plotted. The new method to calculate critical and saturation stresses was devised, quantitative analysis of strain hardening and dynamic softening was presented, a three-stage constitutive model was constructed to predict the flow stress of pure copper. As predicted and measured flow stress comparison indicate, the physical constitutive model can accurately characterize hot deformation of pure copper. With dynamic recovery and/or recrystallization. Numerical simulation of an upsetting process is carried out by implementing the constitutive model into commercial software. This model can be put to practical use and be quite promising for improving efficiency of a hot forging process for pure copper components.Изучено деформационное поведение чистой меди при испытании горячих проб на сжатие в диапазоне температур 773 1173 К и скорости деформации 0.001–1.0 с⁻¹, построены соответствующие кривые напряжения пластического течения. Разработан новый метод расчета критического напряжения и напряжения насыщения, представлен количественный анализ деформационного упрочнения и динамического разупрочнения, построена трехступенчатая определяющая модель прогнозирования напряжения пластического течения чистой меди. Как показывает сравнение прогнозируемого и измеренного напряжений пластического течения, с помощью такой модели можно точно описать горячее деформирование чистой меди при динамическом возврате и/или рекристаллизации. Выполнено численное моделирование процесса высадки путем реализации данной модели в рамках коммерческого программного обеспечения. Модель весьма перспективна и может использоваться для повышения эффективности процесса горячей ковки деталей из чистой меди.Вивчено деформаційне поведінку чистої міді при випробуванні гарячих проб на стиск в діапазоні температур 773-1173 К і швидкості деформації 0.001–1.0 с⁻¹, побудовані відповідні криві напружень пластичної течії. Розроблено новий метод розрахунку критичної напруги і напруги насичення, представлений кількісний аналіз деформаційного зміцнення і динамічного знеміцнення, побудована триступенева визначає модель прогнозування напружень пластичної течії чистої міді. Як показує порівняння прогнозованого і виміряного напружень пластичної течії, за допомогою такої моделі можна точно описати гаряче деформування чистої міді при динамічному поверненні і / або рекристалізації. Виконано чисельне моделювання процесу висадки шляхом реалізації даної моделі в рамках комерційного програмного забезпечення. Модель вельми перспективна і може використовуватися для підвищення ефективності процесу гарячого кування деталей з чистої міді
Multiple sources of infection and potential endemic characteristics of the large outbreak of dengue in Guangdong in 2014
A large outbreak of dengue, with the most documented cases, occurred in Guangdong China in 2014. Epidemiological studies and phylogenetic analysis of the isolated dengue virus (DENV) showed this outbreak was attributed to multiple sources and caused by at least two genotypes of DENV-1 (Genotypes I and III) and two genotypes of DENV-2 (Cosmopolitan and Asian I Genotypes). A retrospective review and phylogenetic analysis of DENV isolated in Guangdong showed that DENV-1 Genotype I strains were reported continuously during 2004-2014, Genotype III strains were reported during 2009-2014 ; DENV-2 Cosmopolitan and Asian I Genotype strains were reported continuously during 2012-2014. At least 45,171 cases were reported in this outbreak, with 65.9% of the patients in the 21-55-year-old group. A trend toward a decrease in the daily newly emerged cases lagged by approximately 20 days compared with the mosquito density curve. Several epidemiological characteristics of this outbreak and the stably sustained serotypes and genotypes of DENV isolated in Guangdong suggest that Guangdong has been facing a threat of transforming from a dengue epidemic area to an endemic area. The high temperature, drenching rain, rapid urbanization, and pandemic of dengue in Southeast Asia may have contributed to this large outbreak of dengue
Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors
A nano-sized nickel/nickel oxide/RGO (Ni/NiO/RGO) nano-hybrid was generated successfully by using a facile and green sol-gel approach, with the reduced graphene oxide as an effective component, for developing a high-efficiency electrode material with super-capacitance. In the novel hierarchical nano-composite, the combination of metallic nickel interfaced with the nickel oxide was created by the reduction of a nickel nitrate precursor with the carbon of the reduced graphene oxide surface, during the thermal treatment in nitrogen. The electrochemical performances of the Ni/NiO/RGO composite were measured through cyclic voltammetry tests and galvanostatic charge-discharges, as a supercapacitor material. Due to the higher conductivity and synergistic effect, the new hybrid delivered a high specific capacitance of 1027.27 F g-1 at the charge/discharge current density of 2 A g-1, and 720 F g-1 at 20 A g-1. After 1000 uninterrupted cycles at 5 A g-1, the high specific capacitance value can be still stabilized, and kept at 92.95% of the initial value of the specific capacitance for Ni/NiO/RGO. This new nano composite with RGO and Ni/NiO exhibits great promise as an electrode material for supercapacitors
Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries
In this paper, we report a flame deposition method to prepare carbon nanoparticles (CNPs) from coconut oil. The CNPs were further modified with a piranha solution to obtain surface-carboxylated carbon nanoparticles (c-CNPs). When used as an anode for sodium-ion batteries, the CNPs and c-CNPs respectively delivered discharge capacities of 277 and 278 mA h g in the second cycle at a current density of 100 mA g. At the 20th cycle, the capacities of CNP and c-CNPs were 217 and 206 mA h g respectively. The results suggest that modification of the CNPs with the piranha solution improved neither the charge storage capacity nor the stability against cycling in a sodium-ion battery. When the CNP and c-CNP were used an anode in a lithium-ion battery, 2nd-cycle discharge capacities of 741 and 742 mA h g respectively at a current density of 100 mA g were obtained. After 20 cycles the capacities of CNP and c-CNP became 464 and 577 mA h g respectively, showing the cycling stability of the CNPs was improved after modification. The excellent cycling performance, high capacity and good rate capability make the present material as highly promising anodes for both sodium-ion and lithium-ion batteries
Electrical transport and magnetic properties of nanostructured La0.67Ca0.33MnO3
Nanostructured La0.67Ca0.33MnO3 (NS-LCMO) was formed by pulsed-laser
deposition on the surface of porous Al2O3. The resistance peak temperature (Tp)
of the NS-LCMO increases with increasing average thickness of the films, while
their Curie temperatures (Tc) remain unchanged. The coercive field of the
samples increases with decreasing film thickness and its temperature dependence
can be well described by Hc(T) = Hc(0)[1-(T/TB)1/2]. A large magnetoresistance
and strong memory effect were observed for the NS-LCMO. The results are
discussed in terms of the size effect, Coulomb blockade and magnetic tunneling
effect. This work also demonstrates a new way to get nanostructured manganites
A minimum single-band model for low-energy excitations in superconducting KFeSe
We propose a minimum single-band model for the newly discovered iron-based
superconducting KFeSe. Our model is found to be numerically
consistent with the five-orbital model at low energies. Based on our model and
the random phase approximation, we study the spin fluctuation and the pairing
symmetry of superconducting gap function. The spin excitation
and the pairing symmetry are revealed. All of the results can
well be understood in terms of the interplay between the Fermi surface topology
and the local spin interaction, providing a sound picture to explain why the
superconducting transition temperature is as high as to be comparable to those
in pnictides and some cuprates. A common origin of superconductivity is
elucidated for this compound and other high-T materials.Comment: 5 pages, 4 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
- …