13 research outputs found
Quantum Dissipative Dynamics of the Magnetic Resonance Force Microscope in the Single-Spin Detection Limit
We study a model of a magnetic resonance force microscope (MRFM) based on the
cyclic adiabatic inversion technique as a high-resolution tool to detect single
electron spins. We investigate the quantum dynamics of spin and cantilever in
the presence of coupling to an environment. To obtain the reduced dynamics of
the combined system of spin and cantilever, we use the Feynman-Vernon influence
functional and get results valid at any temperature as well as at arbitrary
system-bath coupling strength. We propose that the MRFM can be used as a
quantum measurement device, i.e., not only to detect the modulus of the spin
but also its direction
Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials
We investigate the generation of squeezing and entanglement for the motional
degrees of freedom of ions in linear traps, confined by time-varying and
oscillating potentials, comprised of an DC and an AC component. We show that
high degrees of squeezing and entanglement can be obtained by controlling
either the DC or the AC trapping component (or both), and by exploiting
transient dynamics in regions where the ions' motion is unstable, without any
added optical control. Furthermore, we investigate the time-scales over which
the potentials should be switched in order for the manipulations to be most
effective.Comment: 10 pages, submitted to Quantum Information Processing (special issue
on Quantum Decoherence and Entanglement
Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure
We study an isolated, perfectly reflecting, mirror illuminated by an intense
laser pulse. We show that the resulting radiation pressure efficiently
entangles a mirror vibrational mode with the two reflected optical sideband
modes of the incident carrier beam. The entanglement of the resulting
three-mode state is studied in detail and it is shown to be robust against the
mirror mode temperature. We then show how this continuous variable entanglement
can be profitably used to teleport an unknown quantum state of an optical mode
onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure
