47 research outputs found

    Transport Measurements on Nano-engineered Two Dimensional Superconducting Wire Networks

    Full text link
    Superconducting triangular Nb wire networks with high normal-state resistance are fabricated by using a negative tone hydrogen silsesquioxane (HSQ) resist. Robust magnetoresistance oscillations are observed up to high magnetic fields and maintained at low temperatures, due to the eective reduction of wire dimensions. Well-defined dips appear at integral and rational values (1/2, 1/3, 1/4) of the reduced flux f = Phi/Phi_0, which is the first observation in the triangular wire networks. These results are well consistent with theoretical calculations for the reduced critical temperature as a function of f.Comment: 4 pages, 3 figure

    Spin-phonon interaction and band effects in the high-T_C superconductor HgBa_2CuO_4

    Full text link
    Band calculations show that a stripe-like anti-ferromagnetic spin wave is enforced by a 'half-breathing' phonon distortion within the CuO plane of HgBa_2CuO_4. This spin-phonon coupling is increased further by shear distortion and by increased distance between Cu and apical oxygens. The effects from spin-phonon coupling are consistent with many observations in high-T_C materials. Spin-phonon coupling can be important for the mechanism of spin fluctuations and superconductivity, although the effects are quantitatively weak when using the local density potential.Comment: 4 pages, 1 figur

    Fluctuating diamagnetism in underdoped high temperature superconductors

    Full text link
    The fluctuation induced diamagnetism of underdoped high temperature superconductors is studied in the framework of the Lawrence-Doniach model. By taking into account the fluctuations of the phase of the order parameter only, the latter reduces to a layered XY-model describing a liquid of vortices which can be either thermally excited or induced by the external magnetic field. The diamagnetic response is given by a current-current correlation function which is evaluated using the Coulomb gas analogy. Our results are then applied to recent measurements of fluctuation diamagnetism in underdoped YBCO. They allow to understand both the observed anomalous temperature dependence of the zero-field susceptibility and the two distinct regimes appearing in the magnetic field dependence of the magnetization.Comment: 12 pages, 4 figures included, accepted for publication in PR

    Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals

    Full text link
    A sharp resistance drop associated with vortex lattice melting was observed in high quality YBa_2Cu_4O_8 single crystals. The melting line is well described well by the anisotropic GL theory. Two thermally activated flux flow regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T (T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation energy for each region was obtained and the corresponding dissipation mechanism was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8 single crystal melts into disentangled liquid, which then undergoes a 3D-2D decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR

    Finite-time destruction of entanglement and non-locality by environmental influences

    Full text link
    Entanglement and non-locality are non-classical global characteristics of quantum states important to the foundations of quantum mechanics. Recent investigations have shown that environmental noise, even when it is entirely local in influence, can destroy both of these properties in finite time despite giving rise to full quantum state decoherence only in the infinite time limit. These investigations, which have been carried out in a range of theoretical and experimental situations, are reviewed here.Comment: 27 pages, 6 figures, review article to appear in Foundations of Physic

    Critical-path-analysis-based dynamic component supplier optimization

    No full text
    10.1080/09511920500324290International Journal of Computer Integrated Manufacturing188702-709ICIM
    corecore