16,547 research outputs found

    Numerical Simulation of Quartz Tube Solid Particle Air Receiver

    Get PDF
    AbstractThe quartz tube solid particle air receiver is a new type of solar receiver in which fluidized particles absorb the solar radiation directly and heat the air effectively, improving the efficiency of solar thermal power generation and reducing costs. In this article, transient numerical simulation was conducted to simulate the heat transfer and flow processes in single quartz tube under concentrated solar radiation. The results showed that the distribution of solid particles temperature was uniform in the fluidized region, which could overcome the problem of overheating in the volumetric solar receiver. The temperature difference between solid particles and air was no more than 25K, indicating that heat transfer between particles and air was very effective. Further, as the direct solar radiation increased, the average air temperature in the outlet increased while the thermal efficiency decreased. The high tube wall temperature caused heat loss to the environment by radiative and convective heat transfer. With the air inlet velocity increasing, the averaging air temperature in the outlet decreased while the efficiency of the receiver increased. The simulation results provided important reference for improving the performance of the quartz tube solid particle air receiver

    Modified Dispersion Relations: from Black-Hole Entropy to the Cosmological Constant

    Full text link
    Quantum Field Theory is plagued by divergences in the attempt to calculate physical quantities. Standard techniques of regularization and renormalization are used to keep under control such a problem. In this paper we would like to use a different scheme based on Modified Dispersion Relations (MDR) to remove infinities appearing in one loop approximation in contrast to what happens in conventional approaches. In particular, we apply the MDR regularization to the computation of the entropy of a Schwarzschild black hole from one side and the Zero Point Energy (ZPE) of the graviton from the other side. The graviton ZPE is connected to the cosmological constant by means of of the Wheeler-DeWitt equation.Comment: Contribution prepared for the proceedings of the conference on quantum field theory under the influence of external conditions (QFEXT11). 8 page

    Spin and lattice excitations of a BiFeO3 thin film and ceramics

    Full text link
    We present a comprehensive study of polar and magnetic excitations in BiFeO3 ceramics and a thin film epitaxially grown on an orthorhombic (110) TbScO3 substrate. Infrared reflectivity spectroscopy was performed at temperatures from 5 to 900 K for the ceramics and below room temperature for the thin film. All 13 polar phonons allowed by the factor-group analysis were observed in theceramic samples. The thin-film spectra revealed 12 phonon modes only and an additional weak excitation, probably of spin origin. On heating towards the ferroelectric phase transition near 1100 K, some phonons soften, leading to an increase in the static permittivity. In the ceramics, terahertz transmission spectra show five low-energy magnetic excitations including two which were not previously known to be infrared active; at 5 K, their frequencies are 53 and 56 cm-1. Heating induces softening of all magnetic modes. At a temperature of 5 K, applying an external magnetic field of up to 7 T irreversibly alters the intensities of some of these modes. The frequencies of the observed spin excitations provide support for the recently developed complex model of magnetic interactions in BiFeO3 (R.S. Fishman, Phys. Rev. B 87, 224419 (2013)). The simultaneous infrared and Raman activity of the spin excitations is consistent with their assignment to electromagnons

    Ratio of Hadronic Decay Rates of J\psi and \psi(2S) and the \rho\pi Puzzle

    Full text link
    The so-called \rho\pi puzzle of J\psi and \psi(2S) decays is examined using the experimental data available to date. Two different approaches were taken to estimate the ratio of J\psi and \psi(2S) hadronic decay rates. While one of the estimates could not yield the exact ratio of \psi(2S) to J\psi inclusive hadronic decay rates, the other, based on a computation of the inclusive ggg decay rate for \psi(2S) (J\psi) by subtracting other decay rates from the total decay rate, differs by two standard deviations from the naive prediction of perturbative QCD, even though its central value is nearly twice as large as what was naively expected. A comparison between this ratio, upon making corrections for specific exclusive two-body decay modes, and the corresponding experimental data confirms the puzzles in J\psi and \psi(2S) decays. We find from our analysis that the exclusively reconstructed hadronic decays of the \psi(2S) account for only a small fraction of its total decays, and a ratio exceeding the above estimate should be expected to occur for a considerable number of the remaining decay channels. We also show that the recent new results from the BES experiment provide crucial tests of various theoretical models proposed to explain the puzzle.Comment: 8 pages, no figure, 4 table
    corecore