11,411 research outputs found

    Berry phase in a composite system

    Full text link
    The Berry phase in a composite system with only one subsystem being driven has been studied in this Letter. We choose two spin-12\frac 1 2 systems with spin-spin couplings as the composite system, one of the subsystems is driven by a time-dependent magnetic field. We show how the Berry phases depend on the coupling between the two subsystems, and what is the relation between these Berry phases of the whole system and those of the subsystems.Comment: 4 pages, 6 figure

    Electro-spraying and catalytic combustion characteristics of ethanol in meso-scale combustors with steel and platinum meshes

    Get PDF
    © 2018 Elsevier Ltd An experimental study on electro-spraying and catalytic combustion of ethanol at meso-scale is carried out. The electro-spraying process of ethanol is visualized and four typical spraying modes are identified. Based on droplet size measurements by a Phase Doppler Anemometer, the spraying at the cone-jet or multi-jet mode is suitable for meso-scale combustion. Two meso-combustors without and with the platinum catalyst, denoted as combustor A and combustor B, respectively, are designed to conduct the comparative experiments. The flame temperature at the cone-jet mode is higher than those at other modes when equivalence ratio φ = 1.0, and for the combustor with catalyst, fuel-lean conditions are favorable for stable combustion. It is also found that the carbon monoxide mole fraction in the exhaust decreases by at least 25% due to the catalytic effect. At the cone-jet electro-spraying mode, the combustion efficiencies of ethanol reach the highest value for both combustor A and combustor B due to smaller droplet size and more uniform droplet size distribution. Under the same conditions, combustion efficiency of ethanol can be improved by 4.5% for combustor B, which proves that the platinum catalyst can accelerate the decomposition of ethanol

    Interactions of soil moisture and plant community properties in meadows restored from abandoned farmlands on the Sanjiang Plain, China

    Get PDF
    Abstract Soil moisture is a major driving force of plant community succession in restored meadows. Existing studies mainly focus on diversity-productivity relationships. However, studies which determine the effects of soil moisture on the plant community properties in restored meadows are lacking. In this study, we conducted a chronosequence analysis of the interactions between soil water content variation and plant community properties in meadows following passive restoration (3-, 5-, 9-, 14-, 17-, 21-year restoration) of abandoned farmlands on the Sanjiang Plain, China. Results showed that the plant community was characterized by ruderal plants in the initial year of succession, and then by perennial plants such as Calamagrostis angustifolia and Carex spp. in older restored meadows. Similarity of restored community to target site increased across succession time whereas species diversity gradually decreased. Plant height, coverage and biomass increased with restoration time, with plant density being the exception. The community height, coverage and root/shoot ratio were positively related to the water content in the surface soil layer (0–10 cm). Conversely, plant density was significantly and negatively related with soil moisture at 0–10 cm soil depth. Plant diversity (Shannon index, Richness index and evenness) was closely correlated to soil water content at the soil depth of 0–10 cm. Our findings indicate that vegetation of cultivated meadows could be effectively restored by passive restoration. Change of plant species diversity is an especially important response to hydrological recovery in restored meadows on the Sanjiang Plain

    Temporal and Spatial Changing Trends on the Fluvial Sedimentation in the Three Gorges Reservoir, Yangtze River in China

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Adaptive conformal classification with noisy labels

    Full text link
    This paper develops novel conformal prediction methods for classification tasks that can automatically adapt to random label contamination in the calibration sample, enabling more informative prediction sets with stronger coverage guarantees compared to state-of-the-art approaches. This is made possible by a precise theoretical characterization of the effective coverage inflation (or deflation) suffered by standard conformal inferences in the presence of label contamination, which is then made actionable through new calibration algorithms. Our solution is flexible and can leverage different modeling assumptions about the label contamination process, while requiring no knowledge about the data distribution or the inner workings of the machine-learning classifier. The advantages of the proposed methods are demonstrated through extensive simulations and an application to object classification with the CIFAR-10H image data set.Comment: 35 pages (98 pages including references and appendices

    COMPARISON OF DEEP CRUSTAL COMPOSITIONS BETWEEN THE QINLING-DABIE OROGEN (CHINA) AND CENTRAL ASIAN OROGENIC BELT AND IMPLICATIONS FOR UNDERSTANDING ACCRETIONARY AND COLLISIONAL OROGENIC PROCESSES

    Get PDF
    It is generally considered that there are different continental compositions between a subductional– collisional and an accretionary orogen, however, what are the differences and how to identify them has not been well understood. This study attempts to discuss this problem by comparing Nd isotopic compositions of granitoids in the Qinling-Dabie orogen, a typical subductional-collisional orogen, with those in southwestern segment of the Central Asian Orogenic Belt (CAOB), the world's largest phanerozoic accretionary orogenic belt.It is generally considered that there are different continental compositions between a subductional– collisional and an accretionary orogen, however, what are the differences and how to identify them has not been well understood. This study attempts to discuss this problem by comparing Nd isotopic compositions of granitoids in the Qinling-Dabie orogen, a typical subductional-collisional orogen, with those in southwestern segment of the Central Asian Orogenic Belt (CAOB), the world's largest phanerozoic accretionary orogenic belt
    • …
    corecore