6,555 research outputs found

    Cooperative Power Scheduling for a Network of MIMO Links

    Get PDF
    A cooperative power scheduling algorithm developed by Wang, Krunz and Cui is extended for an ad hocnetwork of MIMO links. This algorithm, referred to as pricebased iterative water filling (PIWF) algorithm, is a distributed algorithm by which each link computes its power scheduling through an iterative and cooperative process. The cooperation among all links is achieved by adaptive price factors appliedby each link. Compared to a centralized power scheduling algorithm, the PIWF algorithm is much more efficient in computation although not as efficient in network throughput. Compared to a non-cooperative counter-part by Demirkol and Ingram where all price factors are zero, the PIWF algorithm requires additional in-network computation but is more efficient in network throughput

    Joint Source and Relay Optimization for Parallel MIMO Relay Networks

    Get PDF
    In this article, we study the optimal structure of the source precoding matrix and the relay amplifying matrices for multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes. Two types of receivers are considered at the destination node: (1) The linear minimal mean-squared error (MMSE) receiver; (2) The nonlinear decision feedback equalizer based on the minimal MSE criterion. We show that for both receiver schemes, the optimal source precoding matrix and the optimal relay amplifying matrices have a beamforming structure. Using such optimal structure, joint source and relay power loading algorithms are developed to minimize the MSE of the signal waveform estimation at the destination. Compared with existing algorithms for parallel MIMO relay networks, the proposed joint source and relay beamforming algorithms have significant improvement in the system bit-error-rate performance

    Optimal resource allocation method and fault-tolerant control for redundant robots

    Get PDF
    Resource coordination and allocation strategies are proposed to reduce the probability of failure by aiming at the problem that the robot cannot continue to work after joint failure. Firstly, the principal component analysis method under unsupervised branches in machine learning is used to analyze the reliability function and various indexes of the robot to obtain the comprehensive evaluation function. Then, based on the fault-tolerant-control inverse-kinematics optimal algorithm, each joint can be scheduled by weighted processing. Finally, the comprehensive evaluation function is used as an index to evaluate the probability of fault occurrence, and the weight is defined to realize the coordinated resource allocation of redundant robots. Taking the planar four revolute joints (4R) redundant robot as an example, the algorithm control is compared. Based on reasonable modeling and physical verification, the results show that the method of optimal resource coordination and allocation is effective.</p

    Non-Abelian Medium Effects in Quark-Gluon Plasma

    Get PDF
    Based on the kinetic theory, the non-Abelian medium property of hot Quark-Gluon Plasma is investigated. The nonlinearity of the plasma comes from two aspects: The nonlinear wave-wave interaction and self-interaction of color field. The non-Abelian color permittivity is obtained by expanding the kinetic equations to third order. As an application, the nonlinear Landau damping rate and the nonlinear eigenfrequency shift are calculated in the longwave length limit.Comment: 12 pages(Revtex), no figure

    Optimal Source and Relay Design for Multiuser MIMO AF Relay Communication Systems with Direct Links and Imperfect Channel Information

    Get PDF
    In this paper, we propose statistically robust design for multiuser multiple-input multiple-output (MIMO) relay systems with direct source-destination links and imperfect channel state information (CSI). The minimum mean-squared error (MMSE) of the signal waveform estimation at the destination node is adopted as the design criterion. We develop two iterative methods to solve the nonconvex joint source, relay, and receiver optimization problem. Simulation results demonstrate the improved robustness of the proposed algorithms against CSI errors

    Joint source and relay design for MIMO multi-relay systems using projected gradient approach

    Get PDF
    In this paper, we develop the optimal source precoding matrix and relay amplifying matrices for non-regenerative multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes using the projected gradient (PG) approach. We show that the optimal relay amplifying matrices have a beamforming structure. Exploiting the structure of relay matrices, an iterative joint source and relay matrices optimization algorithm is developed to minimize the mean-squared error (MSE) of the signal waveform estimation at the destination using the PG approach. The performance of the proposed algorithm is demonstrated through numerical simulations
    • …
    corecore