707 research outputs found

    Hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells

    Get PDF
    We study the hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells. The corresponding polariton states are given. The analytical solution and the numerical result of the stationary spectrum for the cavity field are finishedComment: 3 pages, 1 figure. appear in Communications in Theoretical Physic

    FGF-2 gene polymorphism in osteoporosis among Guangxi’s Zhuang Chinese

    Get PDF
    Osteoporosis is a complex multifactorial disorder of gradual bone loss and increased fracture risk. While previous studies have shown the importance of many genetic factors in determining peak bone mass and fragility fractures and in suggesting involvement of fibroblast growth factor-2 (FGF-2) in bone metabolism and bone mass, the relationship of FGF-2 genetic diversity with bone mass/osteoporosis has not yet been revealed. The current study investigated the potential relevance of FGF-2 gene polymorphism in osteoporosis among a Zhuang ethnic Chinese cohort of 623, including 237 normal bone mass controls, 227 osteopenia, and 159 osteoporosis of different ages. Bone density was examined by calcaneus ultrasound attenuation measurement, and single nucleotide polymorphisms (SNPs) and linkage disequilibrium analyses were performed on five SNP loci of FGF-2 gene. Significant differences were found in bone mass in males between the 45-year-old and ≥70-year-old groups (p 0.8, and r² > 0.33). Thus, the rs308442 locus of FGF-2 gene is closely correlated to osteoporosis in this Zhuang ethnic Chinese cohort, and the TA may be the risk genotype of osteoporosis.Xiaoyun Bin, Chaowen Lin, Xiufeng Huang, Qinghui Zhou, Liping Wang and Cory J. Xia

    Visual Compositional Learning for Human-Object Interaction Detection

    Full text link
    Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types forms a long-tail distribution. We devise a deep Visual Compositional Learning (VCL) framework, which is a simple yet efficient framework to effectively address this problem. VCL first decomposes an HOI representation into object and verb specific features, and then composes new interaction samples in the feature space via stitching the decomposed features. The integration of decomposition and composition enables VCL to share object and verb features among different HOI samples and images, and to generate new interaction samples and new types of HOI, and thus largely alleviates the long-tail distribution problem and benefits low-shot or zero-shot HOI detection. Extensive experiments demonstrate that the proposed VCL can effectively improve the generalization of HOI detection on HICO-DET and V-COCO and outperforms the recent state-of-the-art methods on HICO-DET. Code is available at https://github.com/zhihou7/VCL.Comment: Accepted in ECCV202

    Identification of translational activators of glial glutamate transporter EAAT2 through a cell-based high-throughput screening: An approach for preventing excitotoxicity

    Get PDF
    Excitotoxicity has been implicated as the mechanism of neuronal damage resulting from acute insults such as stroke, epilepsy, and trauma, as well as during the progression of adult-onset neurodegenerative disorders such as Alzheimer’s disease and amyotrophic lateral sclerosis (ALS). Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. One potential approach to protect against excitotoxic neuronal damage is enhanced glutamate reuptake. The glial glutamate transporter EAAT2 is the quantitatively dominant glutamate transporter and plays a major role in clearance of glutamate. Expression of EAAT2 protein is highly regulated at the translational level. In an effort to identify compounds that can induce translation of EAAT2 transcripts, a cell-based enzyme-linked immunosorbent assay was developed using a primary astrocyte line stably transfected with a vector designed to identify modulators of EAAT2 translation. This assay was optimized for high-throughput screening, and a library of approximately 140,000 compounds was tested. In the initial screen, 293 compounds were identified as hits. These 293 hits were retested at 3 concentrations, and a total of 61 compounds showed a dose-dependent increase in EAAT2 protein levels. Selected compounds were tested in full 12-point dose-response experiments in the screening assay to assess potency as well as confirmed by Western blot, immunohistochemistry, and glutamate uptake assays to evaluate the localization and function of the elevated EAAT2 protein. These hits provide excellent starting points for developing therapeutic agents to prevent excitotoxicity

    Competition of electronic correlation and reconstruction in La1-xSrxTiO3/SrTiO3 heterostructures

    Full text link
    Electronic correlation and reconstruction are two important factors that play a critical role in shaping the magnetic and electronic properties of correlated low-dimensional systems. Here, we report a competition between the electronic correlation and structural reconstruction in La1-xSrxTiO3/SrTiO3 heterostructures by modulating material polarity and interfacial strain, respectively. The heterostructures exhibit a critical thickness (tc) at which a metal-to-insulator transition (MIT) abruptly occurs at certain thickness, accompanied by the coexistence of two- and three-dimensional (2D and 3D) carriers. Intriguingly, the tc exhibits a V-shaped dependence on the doping concentration of Sr, with the smallest tc value at x = 0.5. We attribute this V-shaped dependence to the competition between the electronic reconstruction (modulated by the polarity) and the electronic correlation (modulated by strain), which are borne out by the experimental results, including strain-dependent electronic properties and the evolution of 2D and 3D carriers. Our findings underscore the significance of the interplay between electronic reconstruction and correlation in the realization and utilization of emergent electronic functionalities in low-dimensional correlated systems

    Symbolic Dynamics Analysis of the Lorenz Equations

    Full text link
    Recent progress of symbolic dynamics of one- and especially two-dimensional maps has enabled us to construct symbolic dynamics for systems of ordinary differential equations (ODEs). Numerical study under the guidance of symbolic dynamics is capable to yield global results on chaotic and periodic regimes in systems of dissipative ODEs which cannot be obtained neither by purely analytical means nor by numerical work alone. By constructing symbolic dynamics of 1D and 2D maps from the Poincare sections all unstable periodic orbits up to a given length at a fixed parameter set may be located and all stable periodic orbits up to a given length may be found in a wide parameter range. This knowledge, in turn, tells much about the nature of the chaotic limits. Applied to the Lorenz equations, this approach has led to a nomenclature, i.e., absolute periods and symbolic names, of stable and unstable periodic orbits for an autonomous system. Symmetry breakings and restorations as well as coexistence of different regimes are also analyzed by using symbolic dynamics.Comment: 35 pages, LaTeX, 13 Postscript figures, uses psfig.tex. The revision concerns a bug at the end of hlzfig12.ps which prevented the printing of the whole .ps file from page 2

    Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion

    Get PDF
    Intra-endolysosomal Ca(2+) release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca(2+) release and the downstream Ca(2+) targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca(2+)-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca(2+) release and subsequent CaM activation

    Common Features in Electronic Structure of the Fe-Based Layered Superconductors from Photoemission Spectroscopy

    Full text link
    High resolution photoemission measurements have been carried out on non-superconducting LaOFeAs parent compound and various superconducting R(O1-xFx)FeAs (R=La, Ce and Pr) compounds. We found that the parent LaOFeAs compound shows a metallic character. Through extensive measurements, we have identified several common features in the electronic structure of these Fe-based compounds: (1). 0.2 eV feature in the valence band; (2). A universal 13~16 meV feature; (3). A clear Fermi cutoff showing zero leading-edge shift in the superconducting state;(4). Lack of superconducting coherence peak(s); (5). Near EF spectral weight suppression with decreasing temperature. These universal features can provide important information about band structure, superconducting gap and pseudogap in these Fe-based materials.Comment: 5 pages,4 figure
    • …
    corecore