10,419 research outputs found

    A Memristor Model with Piecewise Window Function

    Get PDF
    In this paper, we present a memristor model with piecewise window function, which is continuously differentiable and consists of three nonlinear pieces. By introducing two parameters, the shape of this window function can be flexibly adjusted to model different types of memristors. Using this model, one can easily obtain an expression of memristance depending on charge, from which the numerical value of memristance can be readily calculated for any given charge, and eliminate the error occurring in the simulation of some existing window function models

    On the Intersection of Two Plane Curves

    Full text link
    We study the following question: fix a sufficient general curve D of degree d in P^2, what is the least number of intersections between D and an irreducible curve of degree m? G. Xu proved this number i(d, m) is at least d - 2 for all m. This problem can be regarded as the algebraic part of Kobayashi conjecture on the hyperbolicity of P^2 D. We first improved Xu's bound with m fixed and then generalized his result to rational ruled surfaces.Comment: 13 pages in AMS-LATEX. To appear on MR

    Calculation of Peak Particle Velocity Caused by Blasting Vibration in Step Topography

    Full text link
    High ground vibrations not only adversely affect the integrity of the structures in a mine area but also create inconvenience for the nearby population. In order to protect the Sanyou Mine slope in Tangshan, China from blasting vibration, the peak particle velocity in step topography must be accurately calculated. At present, the reflection coefficient of the stress wave at free interface is not considered in the equation for calculating the peak particle velocity in step topography. Therefore the accuracy of the peak particle velocity calculation is decreased in the side direction when the reflection coefficient changes. In this study, a 3D finite element analysis was employed for modeling of the blasting vibration. A series of field-testing experiments was conducted to measure the peak particle velocity. Then the reflection coefficient of the stress wave was calculated. Based on this, the principle of the peak particle velocity in step topography was explained. In addition, the application range of the equation in step topography was determined and a new equation for peak particle velocity calculation in step topography is proposed based on the numerical simulation analysis and field-testing experiment

    Critical Current Density and Resistivity of MgB2 Films

    Full text link
    The high resistivity of many bulk and film samples of MgB2 is most readily explained by the suggestion that only a fraction of the cross-sectional area of the samples is effectively carrying current. Hence the supercurrent (Jc) in such samples will be limited by the same area factor, arising for example from porosity or from insulating oxides present at the grain boundaries. We suggest that a correlation should exist, Jc ~ 1/{Rho(300K) - Rho(50K)}, where Rho(300K) - Rho(50K) is the change in the apparent resistivity from 300 K to 50 K. We report measurements of Rho(T) and Jc for a number of films made by hybrid physical-chemical vapor deposition which demonstrate this correlation, although the "reduced effective area" argument alone is not sufficient. We suggest that this argument can also apply to many polycrystalline bulk and wire samples of MgB2.Comment: 11 pages, 3 figure

    Anomalous Phase Transition in Strained SrTiO3_3 Thin Films

    Full text link
    We have studied the cubic to tetragonal phase transition in epitaxial SrTiO3_3 films under various biaxial strain conditions using synchrotron X-ray diffraction. Measuring the superlattice peak associated with TiO6_6 octahedra rotation in the low temperature tetragonal phase indicates the presence of a phase transition whose critical temperature is a strong function of strain, with TC_C as much as 50K above the corresponding bulk temperature. Surprisingly, the lattice constants evolve smoothly through the transition with no indication of a phase change. This signals an important change in the nature of the phase transition due to the epitaxy strain and substrate clamping effect. The internal degrees of freedom (TiO6_6 rotations) have become uncoupled from the overall lattice shape.Comment: 4 pages, 3 figures, REVTeX

    Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films

    Full text link
    We have studied thermodynamics of the Mg-B system with the modeling technique CALPHAD using a computerized optimization procedure. Temperature-composition, pressure-composition, and pressure-temperature phase diagrams under different conditions are obtained. The results provide helpful insights into appropriate processing conditions for thin films of the superconducting phase, MgB2, including the identification of the pressure/temperature region for adsorption-controlled growth. Due to the high volatility of Mg, MgB2 is thermodynamically stable only under fairly high Mg overpressures for likely growth temperatures. This constraint places severe temperature constraints on deposition techniques employing high vacuum conditions

    Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation

    Full text link
    In order to increase the accelerating gradient of Superconducting Radio Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of its high transition temperature and potential for low surface resistance in the high RF field regime. However, due to the presence of the small superconducting gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite large compared to a single gap s-wave superconductor (SC) such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB2, as well as extrinsic sources, is an urgent requirement. A localized and strong RF magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2 films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that at least two mechanisms are responsible for this nonlinear response, one of which involves vortex nucleation and penetration into the film. [1] T. M. Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field Microwave Microscope for RF Defect Localization in Superconductors", IEEE Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure

    Interaction induced topological phase transition in Bernevig-Hughes-Zhang model

    Full text link
    We study interaction induced topological phase transition in Bernevig-Hughes-Zhang model. Topological nature of the phase transition is revealed by directly calculating the Z2 index of the interacting system from the single-particle Green's function. The interacting Z2 index is also consistently checked through the edge spectra. Combined with ab initio methods, present approach is a useful tool searching for correlated topological insulating materials from the first-principle point of view.Comment: 4.5 pages, 4 figures, reference adde

    Derivation of Electroweak Chiral Lagrangian from One Family Technicolor Model

    Full text link
    Based on previous studies deriving the chiral Lagrangian for pseudo scalar mesons from the first principle of QCD in the path integral formalism, we derive the electroweak chiral Lagrangian and dynamically compute all its coefficients from the one family technicolor model. The numerical results of the p4p^4 order coefficients obtained in this paper are proportional to the technicolor number NTCN_{\rm TC} and the technifermion number NTFN_{\rm TF}, which agrees with the arguments in previous works, and which confirms the reliability of this dynamical computation.Comment: 6 page
    corecore