77,875 research outputs found
A Bi-Hamiltonian Formulation for Triangular Systems by Perturbations
A bi-Hamiltonian formulation is proposed for triangular systems resulted by
perturbations around solutions, from which infinitely many symmetries and
conserved functionals of triangular systems can be explicitly constructed,
provided that one operator of the Hamiltonian pair is invertible. Through our
formulation, four examples of triangular systems are exhibited, which also show
that bi-Hamiltonian systems in both lower dimensions and higher dimensions are
many and varied. Two of four examples give local 2+1 dimensional bi-Hamiltonian
systems and illustrate that multi-scale perturbations can lead to
higher-dimensional bi-Hamiltonian systems.Comment: 16 pages, to appear in J. Math. Phy
A refined invariant subspace method and applications to evolution equations
The invariant subspace method is refined to present more unity and more
diversity of exact solutions to evolution equations. The key idea is to take
subspaces of solutions to linear ordinary differential equations as invariant
subspaces that evolution equations admit. A two-component nonlinear system of
dissipative equations was analyzed to shed light on the resulting theory, and
two concrete examples are given to find invariant subspaces associated with
2nd-order and 3rd-order linear ordinary differential equations and their
corresponding exact solutions with generalized separated variables.Comment: 16 page
A Class of Coupled KdV systems and Their Bi-Hamiltonian Formulations
A Hamiltonian pair with arbitrary constants is proposed and thus a sort of
hereditary operators is resulted. All the corresponding systems of evolution
equations possess local bi-Hamiltonian formulation and a special choice of the
systems leads to the KdV hierarchy. Illustrative examples are given.Comment: 8 pages, late
Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints
The Davey-Stewartson I equation is a typical integrable equation in 2+1
dimensions. Its Lax system being essentially in 1+1 dimensional form has been
found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the
present paper, this essentially 1+1 dimensional Lax system is further
nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann
constraints. It is shown that the resulting 1+0 dimensional Hamiltonian systems
are completely integrable in Liouville sense by finding a full set of integrals
of motion and proving their functional independence.Comment: 10 pages, in LaTeX, to be published in J. Phys. Soc. Jpn. 70 (2001
Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations
An algebraic structure related to discrete zero curvature equations is
established. It is used to give an approach for generating master symmetries of
first degree for systems of discrete evolution equations and an answer to why
there exist such master symmetries. The key of the theory is to generate
nonisospectral flows from the discrete spectral
problem associated with a given system of discrete evolution equations. Three
examples are given.Comment: 24 pages, LaTex, revise
Extension of Hereditary Symmetry Operators
Two models of candidates for hereditary symmetry operators are proposed and
thus many nonlinear systems of evolution equations possessing infinitely many
commutative symmetries may be generated. Some concrete structures of hereditary
symmetry operators are carefully analyzed on the base of the resulting general
conditions and several corresponding nonlinear systems are explicitly given out
as illustrative examples.Comment: 13 pages, LaTe
Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras
Polynomial-in-time dependent symmetries are analysed for polynomial-in-time
dependent evolution equations. Graded Lie algebras, especially Virasoro
algebras, are used to construct nonlinear variable-coefficient evolution
equations, both in 1+1 dimensions and in 2+1 dimensions, which possess
higher-degree polynomial-in-time dependent symmetries. The theory also provides
a kind of new realisation of graded Lie algebras. Some illustrative examples
are given.Comment: 11 pages, latex, to appear in J. Phys. A: Math. Ge
Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations
As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated
Binary Nonlinearization of Lax pairs of Kaup-Newell Soliton Hierarchy
Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different
from the original ones. Binary nonlinearization procedure corresponding to the
Bargmann symmetry constraint is carried out for those Lax pairs. The proposed
Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of
commutative, finite dimensional integrable Hamiltonian systems in the Liouville
sense, which also provides us with new examples of finite dimensional
integrable Hamiltonian systems. A sort of involutive solutions to the
Kaup-Newell hierarchy are exhibited through the obtained finite dimensional
integrable systems and the general involutive system engendered by binary
nonlinearization is reduced to a specific involutive system generated by
mono-nonlinearization.Comment: 15 pages, plain+ams tex, to be published in Il Nuovo Cimento
- …