77,875 research outputs found

    A Bi-Hamiltonian Formulation for Triangular Systems by Perturbations

    Full text link
    A bi-Hamiltonian formulation is proposed for triangular systems resulted by perturbations around solutions, from which infinitely many symmetries and conserved functionals of triangular systems can be explicitly constructed, provided that one operator of the Hamiltonian pair is invertible. Through our formulation, four examples of triangular systems are exhibited, which also show that bi-Hamiltonian systems in both lower dimensions and higher dimensions are many and varied. Two of four examples give local 2+1 dimensional bi-Hamiltonian systems and illustrate that multi-scale perturbations can lead to higher-dimensional bi-Hamiltonian systems.Comment: 16 pages, to appear in J. Math. Phy

    A refined invariant subspace method and applications to evolution equations

    Full text link
    The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations was analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.Comment: 16 page

    A Class of Coupled KdV systems and Their Bi-Hamiltonian Formulations

    Full text link
    A Hamiltonian pair with arbitrary constants is proposed and thus a sort of hereditary operators is resulted. All the corresponding systems of evolution equations possess local bi-Hamiltonian formulation and a special choice of the systems leads to the KdV hierarchy. Illustrative examples are given.Comment: 8 pages, late

    Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints

    Full text link
    The Davey-Stewartson I equation is a typical integrable equation in 2+1 dimensions. Its Lax system being essentially in 1+1 dimensional form has been found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the present paper, this essentially 1+1 dimensional Lax system is further nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann constraints. It is shown that the resulting 1+0 dimensional Hamiltonian systems are completely integrable in Liouville sense by finding a full set of integrals of motion and proving their functional independence.Comment: 10 pages, in LaTeX, to be published in J. Phys. Soc. Jpn. 70 (2001

    Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations

    Full text link
    An algebraic structure related to discrete zero curvature equations is established. It is used to give an approach for generating master symmetries of first degree for systems of discrete evolution equations and an answer to why there exist such master symmetries. The key of the theory is to generate nonisospectral flows (λt=λl,l0)(\lambda_t=\lambda ^l, l\ge0) from the discrete spectral problem associated with a given system of discrete evolution equations. Three examples are given.Comment: 24 pages, LaTex, revise

    Extension of Hereditary Symmetry Operators

    Full text link
    Two models of candidates for hereditary symmetry operators are proposed and thus many nonlinear systems of evolution equations possessing infinitely many commutative symmetries may be generated. Some concrete structures of hereditary symmetry operators are carefully analyzed on the base of the resulting general conditions and several corresponding nonlinear systems are explicitly given out as illustrative examples.Comment: 13 pages, LaTe

    Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras

    Full text link
    Polynomial-in-time dependent symmetries are analysed for polynomial-in-time dependent evolution equations. Graded Lie algebras, especially Virasoro algebras, are used to construct nonlinear variable-coefficient evolution equations, both in 1+1 dimensions and in 2+1 dimensions, which possess higher-degree polynomial-in-time dependent symmetries. The theory also provides a kind of new realisation of graded Lie algebras. Some illustrative examples are given.Comment: 11 pages, latex, to appear in J. Phys. A: Math. Ge

    Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations

    Get PDF
    As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated

    Binary Nonlinearization of Lax pairs of Kaup-Newell Soliton Hierarchy

    Full text link
    Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different from the original ones. Binary nonlinearization procedure corresponding to the Bargmann symmetry constraint is carried out for those Lax pairs. The proposed Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of commutative, finite dimensional integrable Hamiltonian systems in the Liouville sense, which also provides us with new examples of finite dimensional integrable Hamiltonian systems. A sort of involutive solutions to the Kaup-Newell hierarchy are exhibited through the obtained finite dimensional integrable systems and the general involutive system engendered by binary nonlinearization is reduced to a specific involutive system generated by mono-nonlinearization.Comment: 15 pages, plain+ams tex, to be published in Il Nuovo Cimento
    corecore