96,342 research outputs found
Tuning toroidal dipole resonances in dielectric metamolecules by an additional electric dipolar response
With the rise of artificial magnetism and metamaterials, the toroidal family
recently attracts more attention for its unique properties. Here we propose an
all-dielectric pentamer metamolecule consisting of nano-cylinders with two
toroidal dipolar resonances, whose frequencies, EM distributions and Q factor
can be efficiently tuned due to the additional electric dipole mode offered by
a central cylinder. To further reveal the underlying coupling effects and
formation mechanism of toroidal responses, the multiple scattering theory is
adopted. It is found that the first toroidal dipole mode, which can be tuned
from 2.21 to 3.55 m, is mainly induced by a collective electric dipolar
resonance, while the second one, which can be tuned from 1.53 to 1.84 m,
relies on the cross coupling of both electric and magnetic dipolar responses.
The proposed low-loss metamolecule and modes coupling analyses may pave the way
for active design of toroidal responses in advanced optical devices.Comment: 14 pages, 9 figure
Neutrino oscillations in de Sitter space-time
We try to understand flavor oscillations and to develop the formulae for
describing neutrino oscillations in de Sitter space-time. First, the covariant
Dirac equation is investigated under the conformally flat coordinates of de
Sitter geometry. Then, we obtain the exact solutions of the Dirac equation and
indicate the explicit form of the phase of wave function. Next, the concise
formulae for calculating the neutrino oscillation probabilities in de Sitter
space-time are given. Finally, The difference between our formulae and the
standard result in Minkowski space-time is pointed out.Comment: 13 pages, no figure
Optical Flashes and Very Early Afterglows in Wind Environments
The interaction of a relativistic fireball with its ambient medium is
described through two shocks: a reverse shock that propagates into the
fireball, and a forward shock that propagates into the medium. The observed
optical flash of GRB 990123 has been considered to be the emission from such a
reverse shock. The observational properties of afterglows suggest that the
progenitors of some GRBs may be massive stars and their surrounding media may
be stellar winds. We here study very early afterglows from the reverse and
forward shocks in winds. An optical flash mainly arises from the relativistic
reverse shock while a radio flare is produced by the forward shock. The peak
flux densities of optical flashes are larger than 1 Jy for typical parameters,
if we do not take into account some appropriate dust obscuration along the line
of sight. The radio flare always has a long lasting constant flux, which will
not be covered up by interstellar scintillation. The non-detections of optical
flashes brighter than about 9th magnitude may constrain the GRBs isotropic
energies to be no more than a few ergs and wind intensities to be
relatively weak.Comment: 21 pages, 6 figures, accepted by MNRAS on March 7, 200
Recommended from our members
A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss
Dimeric porphyrin molecules have great potential as donor materials for high performance bulk heterojunction organic solar cells (OSCs). Recently reported dimeric porphyrins bridged by ethynylenes showed power conversion efficiencies (PCEs) of more than 8%. In this study, we design and synthesize a new conjugated dimeric D-A porphyrin ZnP2BT-RH, in which the two porphyrin units are linked by an electron accepting benzothiadiazole (BT) unit. The introduction of the BT unit enhances the electron delocalization, resulting in a lower highest occupied molecular orbital (HOMO) energy level and an increased molar extinction coefficient in the near-infrared (NIR) region. The bulk heterojunction solar cells with ZnP2BT-RH as the donor material exhibit a high PCE of up to 10% with a low energy loss (Eloss) of only 0.56 eV. The 10% PCE is the highest for porphyrin-based OSCs with a conventional structure, and this Eloss is also the smallest among those reported for small molecule-based OSCs with a PCE higher than 10% to date
A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus
We present a multiwavelength study of an atypical submillimeter galaxy in the
GOODS-North field, with the aim to understand its physical properties of
stellar and dust emission, as well as the central AGN activity. Although it is
shown that the source is likely an extremely dusty galaxy at high redshift, its
exact position of submillimeter emission is unknown. With the new NOEMA
interferometric imaging, we confirm that the source is a unique dusty galaxy.
It has no obvious counterpart in the optical and even NIR images observed with
HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust
SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot
be fully ruled out (at 90% confidence interval). Explaining its unusual
optical-to-NIR properties requires an old stellar population (~0.67 Gyr),
coexisting with a very dusty ongoing starburst component. The latter is
contributing to the FIR emission, with its rest-frame UV and optical light
being largely obscured along our line of sight. If the observed fluxes at the
rest-frame optical/NIR wavelengths were mainly contributed by old stars, a
total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral
analysis suggests that this galaxy harbors a heavily obscured AGN with
N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44
erg/s, which places this object among distant type 2 quasars. The radio
emission of the source is extremely bright, which is an order of magnitude
higher than the star-formation-powered emission, making it one of the most
distant radio-luminous dusty galaxies. The combined characteristics of the
galaxy suggest that the source appears to have been caught in a rare but
critical transition stage in the evolution of submillimeter galaxies, where we
are witnessing the birth of a young AGN and possibly the earliest stage of its
jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for
publication in the A&
Balanced electronic detection of displacement in nanoelectromechanical systems
We describe a broadband radio frequency balanced bridge technique for electronic detection of displacement in nanoelectromechanical systems (NEMS). With its two-port actuation-detection configuration, this approach generates a background-nulled electromotive force in a dc magnetic field that is proportional to the displacement of the NEMS resonator. We demonstrate the effectiveness of the technique by detecting small impedance changes originating from NEMS electromechanical resonances that are accompanied by large static background impedances at very high frequencies. This technique allows the study of important experimental systems such as doped semiconductor NEMS and may provide benefits to other high frequency displacement transduction circuits
Supply hubs in industrial parks (SHIP): research perspectives
An industrial park is a cluster of enterprises located in one location to share common infrastructure, service and market opportunities. It has been adopted in many countries as an important tool for promoting the economic and industrial development. However, its further development has been impeded by the shortage of land resources especially for enterprises' construction of warehouses. The supply hub, having been employed by large suppliers to warehouse raw materials near manufacturers provides a promising way of solving such problem. In this paper, it is extended to "Supply Hub in Industrial Park (SHIP)" in the sense that warehouses of individual enterprises could be integrated into a single public warehouse and centrally serves the manufacturing processes of all the enterprises in an industrial park. Through the functioning of SHIP, it is expected that the land utilization and cost savings could be improved. As the initial study of SHIP, this paper focuses on several fundamental research perspectives: conceptual framework, working process, and potential benefits. Despite of the qualitative analysis, a mathematical model of SHIP is formulated. This work will contribute to the further research of logistics solutions in industrial parks.published_or_final_versionThe 40th International Conference on Computers & Industrial Engineering (CIE 2010), Awaji, Japan, 25-28 July 2010. In Proceedings of CIE40, 2010, p. 1-6The 40th International Conference on Computers & Industrial Engineering (CIE 2010), Awaji, Japan, 25-28 July 2010. In Proceedings of CIE40, 2010, p. 1-
- …
