220 research outputs found

    Boundary data reconstruction for open channel networks using modal decomposition

    Get PDF
    This article presents a method to estimate flow variables for an open channel network governed by first-order, linear hyperbolic partial differential equations and subject to periodic forcing. The selected external boundary conditions of the system are defined as the model input; the flow properties at internal locations, as well as the other external boundary conditions, are defined as the output. A spatially-dependent transfer matrix in the frequency domain is constructed to relate the model input and output. A data reconciliation technique efficiently eliminates the error in the measured data and results in a reconciliated external boundary conditions; subsequently, the flow properties at any location in the system can be accurately evaluated. The applicability and effectiveness of the method is substantiated with a case study of the river flow subject to tidal forcing in the Sacramento-San Joaquin Delta, California. It is shown that the proposed method gives an accurate estimation of the flow properties at any intermediate location within the channel network

    Flatness-based control of open-channel flow in an irrigation canal using SCADA

    Get PDF
    Open channels are used to distribute water to large irrigated areas. In these systems, ensuring timely water delivery is essential to reduce operational water losses. This article derives a method for open-loop control of open channel flow, based on the Hayami model, a parabolic partial differential equation resulting from a simplification of the Saint-Venant equations. The open-loop control is represented as infinite series using differential flatness. Experimental results show the effectiveness of the approach by applying the open-loop controller to a real irrigation canal located in South of France

    On Metric Dimension of Functigraphs

    Full text link
    The \emph{metric dimension} of a graph GG, denoted by dim⁥(G)\dim(G), is the minimum number of vertices such that each vertex is uniquely determined by its distances to the chosen vertices. Let G1G_1 and G2G_2 be disjoint copies of a graph GG and let f:V(G1)→V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)âˆȘV(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)âˆȘE(G2)âˆȘ{uv∣v=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid v=f(u)\}. We study how metric dimension behaves in passing from GG to C(G,f)C(G,f) by first showing that 2≀dim⁥(C(G,f))≀2n−32 \le \dim(C(G, f)) \le 2n-3, if GG is a connected graph of order n≄3n \ge 3 and ff is any function. We further investigate the metric dimension of functigraphs on complete graphs and on cycles.Comment: 10 pages, 7 figure

    Effective gravitational equations for f(R) braneworld models

    Full text link
    The viability of achieving gravitational consistent braneworld models in the framework of a f(R) theory of gravity is investigated. After a careful generalization of the usual junction conditions encompassing the embedding of the 3-brane into a f(R) bulk, we provide a prescription giving the necessary constraints in order to implement the projected second order effective field equations on the brane.Comment: 15 pages, no figures. Accepted for publication in the Physical Review

    The inflationary bispectrum with curved field-space

    Get PDF
    We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution using a covariantized version of the separate universe or "delta-N" expansion, which must be augmented by terms measuring curvature of the field-space manifold, and give the nonlinear gauge transformation to the comoving curvature perturbation. Nonlinearities induced by the field-space curvature terms are a new and potentially significant source of non-Gaussianity. We show how inflationary models with non-minimal coupling to the spacetime Ricci scalar can be accommodated within this framework. This yields a simple toolkit allowing the bispectrum to be computed in models with non-negligible field-space curvature.Comment: 22 pages, plus appendix and reference

    Curvature singularities, tidal forces and the viability of Palatini f(R) gravity

    Full text link
    In a previous paper we showed that static spherically symmetric objects which, in the vicinity of their surface, are well-described by a polytropic equation of state with 3/2<Gamma<2 exhibit a curvature singularity in Palatini f(R) gravity. We argued that this casts serious doubt on the validity of Palatini f(R) gravity as a viable alternative to General Relativity. In the present paper we further investigate this characteristic of Palatini f(R) gravity in order to clarify its physical interpretation and consequences.Comment: 15 pages. CQG in press. Part of the material moved to an appendix, discussion on the meV scale predictions of Palatini f(R) gravity adde

    Simulation of merging binary neutron stars in full general relativity: Γ=2\Gamma=2 case

    Full text link
    We have performed 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity. We adopt a Γ\Gamma-law equation of state in the form P=(Γ−1)ρϔP=(\Gamma-1)\rho\epsilon where P, ρ\rho, \varep and Γ\Gamma are the pressure, rest mass density, specific internal energy, and the adiabatic constant with Γ=2\Gamma=2. As initial conditions, we adopt models of corotational and irrotational binary neutron stars in a quasi-equilibrium state which are obtained using the conformal flatness approximation for the three geometry as well as an assumption that a helicoidal Killing vector exists. In this paper, we pay particular attention to the final product of the coalescence. We find that the final product depends sensitively on the initial compactness parameter of the neutron stars : In a merger between sufficiently compact neutron stars, a black hole is formed in a dynamical timescale. As the compactness is decreased, the formation timescale becomes longer and longer. It is also found that a differentially rotating massive neutron star is formed instead of a black hole for less compact binary cases, in which the rest mass of each star is less than 70-80% of the maximum allowed mass of a spherical star. In the case of black hole formation, we roughly evaluate the mass of the disk around the black hole. For the merger of corotational binaries, a disk of mass ∌0.05−0.1M∗\sim 0.05-0.1M_* may be formed, where M_* is the total rest mass of the system. On the other hand, for the merger of irrotational binaries, the disk mass appears to be very small : < 0.01M_*.Comment: 27 pages, to appear in Phys. Rev.

    Evolution and Flare Activity of Delta-Sunspots in Cycle 23

    Get PDF
    The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them, the "writhed" and "top-to-top" types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the "writhed" type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the "writhed"-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the essential property of beta-gamma-delta ARs. v) The flare activity of beta-gamma-delta ARs is highly correlated not only with the sunspot area but also with the magnetic complexity. vi) We suggest that there is a possible scaling-law between the flare index and the maximum umbral area

    Morris-Thorne wormholes with a cosmological constant

    Get PDF
    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are briefly reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure of the thin-shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one could expect, being negative (tension) for relatively high cosmological constant and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in-between. Finally, some specific solutions with generic cosmological constant, based on the Morris-Thorne solutions, are provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published in Physical Review
    • 

    corecore