11,558 research outputs found
Massive and Red Objects predicted by a semianalytical model of galaxy formation
We study whether hierarchical galaxy formation in a concordance CDM
universe can produce enough massive and red galaxies compared to the
observations. We implement a semi-analytical model in which the central black
holes gain their mass during major mergers of galaxies and the energy feedback
from active galaxy nuclei (AGN) suppresses the gas cooling in their host halos.
The energy feedback from AGN acts effectively only in massive galaxies when
supermassive black holes have been formed in the central bulges. Compared with
previous models without black hole formation, our model predicts more massive
and luminous galaxies at high redshift, agreeing with the observations of K20
up to . Also the predicted stellar mass density from massive galaxies
agrees with the observations of GDDS. Because of the energy feedback from AGN,
the formation of new stars is stopped in massive galaxies with the termination
of gas cooling and these galaxies soon become red with color 5 (Vega
magnitude), comparable to the Extremely Red Objects (EROs) observed at redshift
1-2. Still the predicted number density of very EROs is lower than
observed at , and it may be related to inadequate descriptions of dust
extinction, star formation history and AGN feedback in those luminous galaxies.Comment: Accepted for Publication in ApJ, added reference
Quantum dense coding in multiparticle entangled states via local measurements
In this paper, we study quantum dense coding between two arbitrarily fixed
particles in a (N+2)-particle maximally-entangled states through introducing an
auxiliary qubit and carrying out local measurements. It is shown that the
transmitted classical information amount through such an entangled quantum
channel usually is less than two classical bits. However, the information
amount may reach two classical bits of information, and the classical
information capacity is independent of the number of the entangled particles in
the initial entangled state under certain conditions. The results offer deeper
insights to quantum dense coding via quantum channels of multi-particle
entangled states.Comment: 3 pages, no figur
Nonlinear force-free field modeling of a solar active region using SDO/HMI and SOLIS/VSM data
We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to
model the force-free coronal field above a solar active region, assuming
magnetic forces to dominate. We take measurement uncertainties caused by, e.g.,
noise and the particular inversion technique into account. After searching for
the optimum modeling parameters for the particular data sets, we compare the
resulting nonlinear force-free model fields. We show the degree of agreement of
the coronal field reconstructions from the different data sources by comparing
the relative free energy content, the vertical distribution of the magnetic
pressure and the vertically integrated current density. Though the longitudinal
and transverse magnetic flux measured by the VSM and HMI is clearly different,
we find considerable similarities in the modeled fields. This indicates the
robustness of the algorithm we use to calculate the nonlinear force-free fields
against differences and deficiencies of the photospheric vector maps used as an
input. We also depict how much the absolute values of the total force-free,
virial and the free magnetic energy differ and how the orientation of the
longitudinal and transverse components of the HMI- and VSM-based model volumes
compares to each other.Comment: 9 pages, 5 figure
Energy Aware Trajectory Optimization for Aerial Base Stations
By fully exploiting the mobility of unmanned aerial vehicles (UAVs), UAV-based aerial base stations (BSs) can move closer to ground users to achieve better communication conditions. In this paper, we consider a scenario where an aerial BS is dispatched for satisfying the data request of a maximum number of ground users, weighted according to their data demand, before exhausting its on-board energy resources. The resulting trajectory optimization problem is a mixed integer non-linear problem (MINLP) which is challenging solve. Specifically, there are coupling constraints which cannot be solved directly. We exploit a penalty decomposition method to reformulate the optimization formulation into a new form and use block coordinate descent technique to decompose the problem into sub-problems. Then, successive convex approximation technique is applied to tackle non-convex constraints. Finally, we propose a double-loop iterative algorithm for the UAV trajectory design. In addition, to achieve a better coverage performance, the problem of designing the initial trajectory for the UAV trajectory is considered. In the results section, UAV trajectories with the proposed algorithm are shown. Numerical results show the coverage performance with the proposed schemes compared to the benchmarks
Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses
We propose a scheme of increasing quantum correlations for the cavity quantum
electrodynamics system consisting of two noninteracting two-level atoms each
locally interacting with its own quantized field mode by bang-bang pulses. We
investigate the influence of the bang-bang pulses on the dynamics of quantum
discord, entanglement, quantum mutual information and classical correlation
between the two atoms. It is shown that the amount of quantum discord and
entanglement of the two atoms can be improved by applying the bang-bang pulses.Comment: 6 pages, 5 figure
The Role of Phase Space in Complex Fragment Emission from Low to Intermediate Energies
The experimental emission probabilities of complex fragments by low energy
compound nuclei and their dependence upon energy and atomic number are compared
to the transition state rates. Intermediate-mass-fragment multiplicity
distributions for a variety of reactions at intermediate energies are shown to
be binomial and thus reducible at all measured transverse energies. From these
distributions a single binary event probability can be extracted which has a
thermal dependence. A strong thermal signature is also found in the charge
distributions. The n-fold charge distributions are reducible to the 1-fold
charge distributions through a simple scaling dictated by fold number and
charge conservation.Comment: 15 pages, TeX type, psfig, also available at
http://csa5.lbl.gov/moretto/ps/brazil.ps, to appear in Proceedings of the 1st
International Conference on Nuclear Dynamics at Long and Short Distances,
April 8-12, 1996, Angra dos Reis, Brazi
Coherent population trapping in a dressed two-level atom via a bichromatic field
We show theoretically that by applying a bichromatic electromagnetic field,
the dressed states of a monochromatically driven two-level atom can be pumped
into a coherent superposition termed as dressed-state coherent population
trapping. Such effect can be viewed as a new doorknob to manipulate a two-level
system via its control over dressed-state populations. Application of this
effect in the precision measurement of Rabi frequency, the unexpected
population inversion and lasing without inversion are discussed to demonstrate
such controllability.Comment: 14 pages, 6 figure
- …