24,935 research outputs found
Dynamic Balancing in Illness Coping: An Interpretative Phenomenological Analysis on the Lived Experience of Chinese Patients with Psoriasis
published_or_final_versio
On precessing flow in an oblate spheroid of arbitrary eccentricity
This is the author accepted manuscript. The final version is available from Cambridge University Press via the DOI in this record. Copyright © 2014 Cambridge University PressWe consider a homogeneous fluid of viscosity v confined within an oblate spheroidal cavity of arbitrary eccentricity E marked by the equatorial radius d and the polar radius d √1-E2 with 0<E<1. The spheroidal container rotates rapidly with an angular velocity Ω0 about its symmetry axis and precesses slowly with an angular velocity Ωp about an axis that is fixed in space. It is through both topographical and viscous effects that the spheroidal container and the viscous fluid are coupled together, driving precessing flow against viscous dissipation. The precessionally driven flow is characterized by three dimensionless parameters: the shape parameter E , the Ekman number Ek=v /(d2|Ω| 0 and the Poincaré number Po=±|Ωp|/ |Ω0|. We derive a time-dependent asymptotic solution for the weakly precessing flow in the mantle frame of reference satisfying the no-slip boundary condition and valid for a spheroidal cavity of arbitrary eccentricity at Ek≪1. No prior assumptions about the spatialoral structure of the precessing flow are made in the asymptotic analysis. We also carry out direct numerical simulation for both the weakly and the strongly precessing flow in the same frame of reference using a finite-element method that is particularly suitable for non-spherical geometry. A satisfactory agreement between the asymptotic solution and direct numerical simulation is achieved for sufficiently small Ekman and Poincaré numbers. When the nonlinear effect is weak with |Po| ≪ 1, the precessing flow in an oblate spheroid is characterized by an azimuthally travelling wave without having a mean azimuthal flow. Stronger nonlinear effects with increasing |Po| produce a large-amplitude, time-independent mean azimuthal flow that is always westward in the mantle frame of reference. Implications of the precessionally driven flow for the westward motion observed in the Earth's fluid core are also discussed. © 2014 Cambridge University Press.Science & Technology Facilities Council (STFC)NERCHong Kong RGCNSFCChinese Academy of SciencesK.Z. is supported by UK STFC and NERC grants, K.H.C. is supported by
Hong Kong RGC grant/700310 and X.L. is supported by NSFC/11133004 and
Chinese Academy of Sciences under grant number KZZD-EW-01-3. The numerical
computation is supported by Shanghai Supercomputer Cente
A Model Behind the Standard Model
In spite of its many successes, the Standard Model makes many empirical
assumptions in the Higgs and fermion sectors for which a deeper theoretical
basis is sought. Starting from the usual gauge symmetry plus the 3 assumptions: (A) scalar fields as vielbeins in
internal symmetry space \cite{framevec}, (B) the ``confinement picture'' of
symmetry breaking \cite{tHooft,Banovici}, (C) generations as ``dual'' to colour
\cite{genmixdsm}, we are led to a scheme which offers: (I) a geometrical
significance to scalar fields, (II) a theoretical criterion on what scalar
fields are to be introduced, (III) a partial explanation of why appears
broken while confines, (IV) baryon-lepton number (B - L) conservation,
(V) the standard electroweak structure, (VI) a 3-valued generation index for
leptons and quarks, and (VII) a dynamical system with all the essential
features of an earlier phenomenological model \cite{genmixdsm} which gave a
good description of the known mass and mixing patterns of quarks and leptons
including neutrino oscillations. There are other implications the consistency
of which with experiment, however, has not yet been systematically explored. A
possible outcome is a whole new branch of particle spectroscopy from
confinement, potentially as rich in details as that of hadrons from colour
confinement, which will be accessible to experiment at high energy.Comment: 66 pages, added new material on phenomenology, and some new
reference
Dynamic Windows Scheduling with Reallocation
We consider the Windows Scheduling problem. The problem is a restricted
version of Unit-Fractions Bin Packing, and it is also called Inventory
Replenishment in the context of Supply Chain. In brief, the problem is to
schedule the use of communication channels to clients. Each client ci is
characterized by an active cycle and a window wi. During the period of time
that any given client ci is active, there must be at least one transmission
from ci scheduled in any wi consecutive time slots, but at most one
transmission can be carried out in each channel per time slot. The goal is to
minimize the number of channels used. We extend previous online models, where
decisions are permanent, assuming that clients may be reallocated at some cost.
We assume that such cost is a constant amount paid per reallocation. That is,
we aim to minimize also the number of reallocations. We present three online
reallocation algorithms for Windows Scheduling. We evaluate experimentally
these protocols showing that, in practice, all three achieve constant amortized
reallocations with close to optimal channel usage. Our simulations also expose
interesting trade-offs between reallocations and channel usage. We introduce a
new objective function for WS with reallocations, that can be also applied to
models where reallocations are not possible. We analyze this metric for one of
the algorithms which, to the best of our knowledge, is the first online WS
protocol with theoretical guarantees that applies to scenarios where clients
may leave and the analysis is against current load rather than peak load. Using
previous results, we also observe bounds on channel usage for one of the
algorithms.Comment: 6 figure
Recommended from our members
Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China
Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 <18% of Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower (p<0.05) than in traffic streets, and the differences in exposure levels between new urban streets and old urban streets were highly significant (p<0.01). Pedestrian exposure to toxic VOCs and PM 10 was higher than those reported in other public transportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments. © 2004 Elsevier Ltd. All rights reserved
The effect of 3He impurities on the nonclassical response to oscillation of solid 4He
We have investigated the influence of impurities on the possible supersolid
transition by systematically enriching isotopically-pure 4He (< 1 ppb of 3He)
with 3He. The onset of nonclassical rotational inertia is broadened and shifts
monotonically to higher temperature with increasing 3He concentration,
suggesting that the phenomenon is correlated to the condensation of 3He atoms
onto the dislocation network in solid 4He.Comment: 4 page
- …