4,338 research outputs found
Statefinder Parameters for Tachyon Dark Energy Model
In this paper we study the statefinder parameters for the tachyon dark energy
model. There are two kinds of stable attractor solutions in this model. The
statefinder diagrams characterize the properties of the tachyon dark energy
model. Our results show that the evolving trajectories of the attractor
solutions lie in the total region and pass through the LCDM fixed point, which
is different from other dark energy model.Comment: 5 pages, 5 figures, accepted by MPL
A novel chip-interleaving DS SS system
This paper proposes a chip-interleaving direct-sequence (DS) spread-spectrum (SS) system. Its performance is analyzed under ON-OFF wide-band jamming, and closed-form bit error rate (BER) performances of two special cases of the system are obtained. The behavior of the system under tone interference is also studied. The average signal-to-noise ratio of the system is given as a function of tone interference frequency, and the system BER performance under harmonic tone jamming is then investigated. The system is compared with a conventional system using numerical examples.published_or_final_versio
A chip-interleaving DS SS system and its performance under on-off wide-band jamming
A modified direct sequence spread spectrum system employing the concept of chip-interleaving is proposed. Its performance under periodic on-off wide-band jamming is analyzed and closed-form bit error rate (BER) performances of the proposed system for both the best case and the worst case are obtained. The proposed system is compared with conventional system using numerical examples.published_or_final_versio
The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model
The integrated Sachs-Wolfe (ISW) effect is an important implication for dark
energy. In this paper, we have calculated the power spectrum of the ISW effect
in the time varying vacuum cosmological model, where the model parameter
is obtained by the observational constraint of the growth rate.
It's found that the source of the ISW effect is not only affected by the
different evolutions of the Hubble function and the dimensionless matter
density , but also by the different growth function , all
of which are changed due to the presence of matter production term in the time
varying vacuum model. However, the difference of the ISW effect in
model and model is lessened to
a certain extent due to the integration from the time of last scattering to the
present. It's implied that the observations of the galaxies with high redshift
are required to distinguish the two models
Nuclear Magnetic Resonance Implementation of a Quantum Clock Synchronization Algorithm
The quantum clock synchronization algorithm proposed by I. L. Chuang (Phys.
Rev. Lett, 85, 2006(2000)) has been implemented in a three qubit nuclear
magnetic resonance quantum system. The effective-pure state is prepared by the
spatial averaging approach. The time difference between two separated clocks
can be determined by reading out directly through the NMR spectra.Comment: 13 pages, 5 figure
Crystal growth and quantum oscillations in the topological chiral semimetal CoSi
We survey the electrical transport properties of the single-crystalline,
topological chiral semimetal CoSi which was grown via different methods.
High-quality CoSi single crystals were found in the growth from tellurium
solution. The sample's high carrier mobility enables us to observe, for the
first time, quantum oscillations (QOs) in its thermoelectrical signals. Our
analysis of QOs reveals two spherical Fermi surfaces around the R point in the
Brillouin zone corner. The extracted Berry phases of these electron orbits are
consistent with the -2 chiral charge as reported in DFT calculations. Detailed
analysis on the QOs reveals that the spin-orbit coupling induced band-splitting
is less than 2 meV near the Fermi level, one order of magnitude smaller than
our DFT calculation result. We also report the phonon-drag induced large Nernst
effect in CoSi at intermediate temperatures
Local regularization assisted split augmented Lagrangian shrinkage algorithm for feature selection in condition monitoring
\ua9 2024 The Author(s)Feature selection plays a vital role in improving the efficiency and accuracy of condition monitoring by constructing sparse but effective models. In this study, an advanced feature selection algorithm named the local regularization assisted split augmented Lagrangian shrinkage algorithm (LR-SALSA) is proposed. The feature selection is realized by solving a l1-norm optimization problem, which usually selects more sparse and representative features at less computational costs. The proposed algorithm operates in two stages, namely variable selection and coefficient estimation. In the stage of variable selection, the primal problem is converted into three subproblems which can be solved separately. Then individual penalty parameters are applied to every coefficient of the model when dealing with the first subproblem. Under the Bayesian evidence framework, an iterative algorithm is derived to optimize these hyperparameters. During the optimization process, redundant variables will be pruned to guarantee model sparsity and improve computational efficiency at the same time. In the second stage, the coefficients for the selected model terms are determined using the least squares technique. The superior performance and efficiency of the proposed LR-SALSA method are validated through two numerical examples and a real-world cutting tool wear prediction case study. Compared with the existing methods, the proposed method can generate a sparse model and ensure a good trade-off between estimation accuracy and computational efficiency
Load Analysis of pitch bearing considering non-quenching zone
The pitch bearing of the MW-class wind turbine has a weak zone which is not quenched. In the complicated service environment of the wind turbine, the pitch bearing often has breakage accidents in the non-quenching zone. Firstly, this paper takes the pitch bearing as the object and establishes the pitch bearing model with weak zone. Subsequently, the load variation law of the pitch bearing considering non-quenching is analyzed in the four extreme conditions. Finally, the feasibility of the model is proved by comparing the simulation data with the data obtained from the theoretical formula
Thermal conduction of carbon nanotubes using molecular dynamics
The heat flux autocorrelation functions of carbon nanotubes (CNTs) with
different radius and lengths is calculated using equilibrium molecular
dynamics. The thermal conductance of CNTs is also calculated using the
Green-Kubo relation from the linear response theory. By pointing out the
ambiguity in the cross section definition of single wall CNTs, we use the
thermal conductance instead of conductivity in calculations and discussions. We
find that the thermal conductance of CNTs diverges with the CNT length. After
the analysis of vibrational density of states, it can be concluded that more
low frequency vibration modes exist in longer CNTs, and they effectively
contribute to the divergence of thermal conductance.Comment: 15 pages, 6 figures, submitted to Physical Review
- …