4,338 research outputs found

    Statefinder Parameters for Tachyon Dark Energy Model

    Full text link
    In this paper we study the statefinder parameters for the tachyon dark energy model. There are two kinds of stable attractor solutions in this model. The statefinder diagrams characterize the properties of the tachyon dark energy model. Our results show that the evolving trajectories of the attractor solutions lie in the total region and pass through the LCDM fixed point, which is different from other dark energy model.Comment: 5 pages, 5 figures, accepted by MPL

    A novel chip-interleaving DS SS system

    Get PDF
    This paper proposes a chip-interleaving direct-sequence (DS) spread-spectrum (SS) system. Its performance is analyzed under ON-OFF wide-band jamming, and closed-form bit error rate (BER) performances of two special cases of the system are obtained. The behavior of the system under tone interference is also studied. The average signal-to-noise ratio of the system is given as a function of tone interference frequency, and the system BER performance under harmonic tone jamming is then investigated. The system is compared with a conventional system using numerical examples.published_or_final_versio

    A chip-interleaving DS SS system and its performance under on-off wide-band jamming

    Get PDF
    A modified direct sequence spread spectrum system employing the concept of chip-interleaving is proposed. Its performance under periodic on-off wide-band jamming is analyzed and closed-form bit error rate (BER) performances of the proposed system for both the best case and the worst case are obtained. The proposed system is compared with conventional system using numerical examples.published_or_final_versio

    The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model

    Full text link
    The integrated Sachs-Wolfe (ISW) effect is an important implication for dark energy. In this paper, we have calculated the power spectrum of the ISW effect in the time varying vacuum cosmological model, where the model parameter β=4.407\beta=4.407 is obtained by the observational constraint of the growth rate. It's found that the source of the ISW effect is not only affected by the different evolutions of the Hubble function H(a)H(a) and the dimensionless matter density Ωm(a)\Omega_m(a), but also by the different growth function D+(a)D_+(a), all of which are changed due to the presence of matter production term in the time varying vacuum model. However, the difference of the ISW effect in Λ(t)CDM\Lambda(t)\textmd{CDM} model and ΛCDM\Lambda \textmd{CDM} model is lessened to a certain extent due to the integration from the time of last scattering to the present. It's implied that the observations of the galaxies with high redshift are required to distinguish the two models

    Nuclear Magnetic Resonance Implementation of a Quantum Clock Synchronization Algorithm

    Full text link
    The quantum clock synchronization algorithm proposed by I. L. Chuang (Phys. Rev. Lett, 85, 2006(2000)) has been implemented in a three qubit nuclear magnetic resonance quantum system. The effective-pure state is prepared by the spatial averaging approach. The time difference between two separated clocks can be determined by reading out directly through the NMR spectra.Comment: 13 pages, 5 figure

    Crystal growth and quantum oscillations in the topological chiral semimetal CoSi

    Get PDF
    We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures

    Local regularization assisted split augmented Lagrangian shrinkage algorithm for feature selection in condition monitoring

    Get PDF
    \ua9 2024 The Author(s)Feature selection plays a vital role in improving the efficiency and accuracy of condition monitoring by constructing sparse but effective models. In this study, an advanced feature selection algorithm named the local regularization assisted split augmented Lagrangian shrinkage algorithm (LR-SALSA) is proposed. The feature selection is realized by solving a l1-norm optimization problem, which usually selects more sparse and representative features at less computational costs. The proposed algorithm operates in two stages, namely variable selection and coefficient estimation. In the stage of variable selection, the primal problem is converted into three subproblems which can be solved separately. Then individual penalty parameters are applied to every coefficient of the model when dealing with the first subproblem. Under the Bayesian evidence framework, an iterative algorithm is derived to optimize these hyperparameters. During the optimization process, redundant variables will be pruned to guarantee model sparsity and improve computational efficiency at the same time. In the second stage, the coefficients for the selected model terms are determined using the least squares technique. The superior performance and efficiency of the proposed LR-SALSA method are validated through two numerical examples and a real-world cutting tool wear prediction case study. Compared with the existing methods, the proposed method can generate a sparse model and ensure a good trade-off between estimation accuracy and computational efficiency

    Load Analysis of pitch bearing considering non-quenching zone

    Get PDF
    The pitch bearing of the MW-class wind turbine has a weak zone which is not quenched. In the complicated service environment of the wind turbine, the pitch bearing often has breakage accidents in the non-quenching zone. Firstly, this paper takes the pitch bearing as the object and establishes the pitch bearing model with weak zone. Subsequently, the load variation law of the pitch bearing considering non-quenching is analyzed in the four extreme conditions. Finally, the feasibility of the model is proved by comparing the simulation data with the data obtained from the theoretical formula

    Thermal conduction of carbon nanotubes using molecular dynamics

    Full text link
    The heat flux autocorrelation functions of carbon nanotubes (CNTs) with different radius and lengths is calculated using equilibrium molecular dynamics. The thermal conductance of CNTs is also calculated using the Green-Kubo relation from the linear response theory. By pointing out the ambiguity in the cross section definition of single wall CNTs, we use the thermal conductance instead of conductivity in calculations and discussions. We find that the thermal conductance of CNTs diverges with the CNT length. After the analysis of vibrational density of states, it can be concluded that more low frequency vibration modes exist in longer CNTs, and they effectively contribute to the divergence of thermal conductance.Comment: 15 pages, 6 figures, submitted to Physical Review
    corecore