16,033 research outputs found
Prototype system for supporting the incremental modelling of vague geometric configurations
In this paper the need for Intelligent Computer Aided Design (Int.CAD) to jointly support design and learning assistance is introduced. The paper focuses on presenting and exploring the possibility of realizing learning assistance in Int.CAD by introducing a new concept called Shared Learning. Shared Learning is proposed to empower CAD tools with more useful learning capabilities than that currently available and thereby provide a stronger interaction of learning between a designer and a computer. Controlled computational learning is proposed as a means whereby the Shared Learning concept can be realized. The viability of this new concept is explored by using a system called PERSPECT. PERSPECT is a preliminary numerical design tool aimed at supporting the effective utilization of numerical experiential knowledge in design. After a detailed discussion of PERSPECT's numerical design support, the paper presents the results of an evaluation that focuses on PERSPECT's implementation of controlled computational learning and ability to support a designer's need to learn. The paper then discusses PERSPECT's potential as a tool for supporting the Shared Learning concept by explaining how a designer and PERSPECT can jointly learn. There is still much work to be done before the full potential of Shared Learning can be realized. However, the authors do believe that the concept of Shared Learning may hold the key to truly empowering learning in Int.CAD
Fermionization and fractional statistics in the strongly interacting one-dimensional Bose gas
We discuss recent results on the relation between the strongly interacting
one-dimensional Bose gas and a gas of ideal particles obeying nonmutual
generalized exclusion statistics (GES). The thermodynamic properties considered
include the statistical profiles, the specific heat and local pair
correlations. In the strong coupling limit , the
Tonks-Girardeau gas, the equivalence is with Fermi statistics. The deviation
from Fermi statistics during boson fermionization for finite but large
interaction strength is described by the relation , where is a measure of the GES. This gives a quantitative
description of the fermionization process. In this sense the recent
experimental measurement of local pair correlations in a 1D Bose gas of
Rb atoms also provides a measure of the deviation of the GES parameter
away from the pure Fermi statistics value . Other
thermodynamic properties, such as the distribution profiles and the specific
heat, are also sensitive to the statistics. They also thus provide a way of
exploring fractional statistics in the strongly interacting 1D Bose gas.Comment: 7 pages, 4 figure
Ferromagnetic behaviour in the strongly interacting two-component Bose gas
We investigate the low temperature behaviour of the integrable 1D
two-component spinor Bose gas using the thermodynamic Bethe ansatz. We find
that for strong coupling the characteristics of the thermodynamics at low
temperatures are quantitatively affected by the spin ferromagnetic states,
which are described by an effective ferromagnetic Heisenberg chain. The free
energy, specific heat, susceptibility and local pair correlation function are
calculated for various physical regimes in terms of temperature and interaction
strength. These thermodynamic properties reveal spin effects which are
significantly different than those of the spinless Bose gas. The zero-field
susceptibility for finite strong repulsion exceeds that of a free spin
paramagnet. The critical exponents of the specific heat and
the susceptibility are indicative of the ferromagnetic
signature of the two-component spinor Bose gas. Our analytic results are
consistent with general arguments by Eisenberg and Lieb for polarized spinor
bosons.Comment: 15 pages, 6 figures, revised version, references added, minor
correction
A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme
A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well
Yang-Yang method for the thermodynamics of one-dimensional multi-component interacting fermions
Using Yang and Yang's particle-hole description, we present a thorough
derivation of the thermodynamic Bethe ansatz equations for a general
fermionic system in one-dimension for both the repulsive and
attractive regimes under the presence of an external magnetic field. These
equations are derived from Sutherland's Bethe ansatz equations by using the
spin-string hypothesis. The Bethe ansatz root patterns for the attractive case
are discussed in detail. The relationship between the various phases of the
magnetic phase diagrams and the external magnetic fields is given for the
attractive case. We also give a quantitative description of the ground state
energies for both strongly repulsive and strongly attractive regimes.Comment: 22 pages, 2 figures, slight improvements, some extra reference
Exactly solvable models and ultracold Fermi gases
Exactly solvable models of ultracold Fermi gases are reviewed via their
thermodynamic Bethe Ansatz solution. Analytical and numerical results are
obtained for the thermodynamics and ground state properties of two- and
three-component one-dimensional attractive fermions with population imbalance.
New results for the universal finite temperature corrections are given for the
two-component model. For the three-component model, numerical solution of the
dressed energy equations confirm that the analytical expressions for the
critical fields and the resulting phase diagrams at zero temperature are highly
accurate in the strong coupling regime. The results provide a precise
description of the quantum phases and universal thermodynamics which are
applicable to experiments with cold fermionic atoms confined to one-dimensional
tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16
pages, 6 figure
Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms
A simple set of algebraic equations is derived for the exact low-temperature
thermodynamics of one-dimensional multi-component strongly attractive fermionic
atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal
multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For
linear Zeeman splitting, the physics of the gapless phase at low temperatures
belongs to the universality class of a two-component asymmetric TLL
corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms.
The equation of states is also obtained to open up the study of multi-component
TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure
Phase Transitions and Pairing Signature in Strongly Attractive Fermi Atomic Gases
We investigate pairing and quantum phase transitions in the one-dimensional
two-component Fermi atomic gas in an external field. The phase diagram,
critical fields, magnetization and local pairing correlation are obtained
analytically via the exact thermodynamic Bethe ansatz solution. At zero
temperature, bound pairs of fermions with opposite spin states form a singlet
ground state when the external field . A completely ferromagnetic
phase without pairing occurs when the external field . In the
region we observe a mixed phase of matter in which paired
and unpaired atoms coexist. The phase diagram is reminiscent of that of type II
superconductors. For temperatures below the degenerate temperature and in the
absence of an external field, the bound pairs of fermions form hard-core bosons
obeying generalized exclusion statistics.Comment: 9 pages, 5 figures, expanded version with additional text, references
and figure
Integrable impurities for an open fermion chain
Employing the graded versions of the Yang-Baxter equation and the reflection
equations, we construct two kinds of integrable impurities for a small-polaron
model with general open boundary conditions: (a) we shift the spectral
parameter of the local Lax operator at arbitrary sites in the bulk, and (b) we
embed the impurity fermion vertex at each boundary of the chain. The
Hamiltonians with different types of impurity terms are given explicitly. The
Bethe ansatz equations, as well as the eigenvalues of the Hamiltonians, are
constructed by means of the quantum inverse scattering method. In addition, we
discuss the ground-state properties in the thermodynamic limit.Comment: 20 pages, 4 figure
- …