34,725 research outputs found

    Anyonic statistics with continuous variables

    Full text link
    We describe a continuous-variable scheme for simulating the Kitaev lattice model and for detecting statistics of abelian anyons. The corresponding quantum optical implementation is solely based upon Gaussian resource states and Gaussian operations, hence allowing for a highly efficient creation, manipulation, and detection of anyons. This approach extends our understanding of the control and application of anyons and it leads to the possibility for experimental proof-of-principle demonstrations of anyonic statistics using continuous-variable systems.Comment: 5 pages, 2 figures, appear in Phys. Rev.

    Observations of enhanced nonlinear instability in the surface reflection of internal tides

    Get PDF
    Enhanced vertically standing waves formed by the superposition of two upward and downward going near-diurnal (D1) waves are observed during one semidiurnal (D2) spring tide in an approximately 75day long velocity record from the northeastern South China Sea. Bicoherence estimates suggest that the enhanced D1 waves are likely due to nonlinear parametric subharmonic instability of D2 internal tides. The timescale for energy growth by an order of magnitude is about 2.5days for these waves. In addition to subharmonics, higher harmonics D4 (=D2+D2) and a mean flow are generated by a different nonlinear interaction during the same D2 spring tide. The separation of coherent from incoherent internal tidal signals and a rotary spectral decomposition in the vertical direction reveal that D2 waves with opposite vertical propagation directions in the region of internal tide reflection from the surface may be responsible for the pronounced nonlinear instability

    Positive mass theorems for asymptotically AdS spacetimes with arbitrary cosmological constant

    Full text link
    We formulate and prove the Lorentzian version of the positive mass theorems with arbitrary negative cosmological constant for asymptotically AdS spacetimes. This work is the continuation of the second author's recent work on the positive mass theorem on asymptotically hyperbolic 3-manifolds.Comment: 17 pages, final version, to appear in International Journal of Mathematic

    Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics

    Get PDF
    The recent development of techniques for laser-driven shock compression of hydrogen has opened the door to the experimental determination of its behavior under conditions characteristic of stellar and planetary interiors. The new data probe the equation of state (EOS) of dense hydrogen in the complex regime of pressure ionization. The structure and evolution of dense astrophysical bodies depend on whether the pressure ionization of hydrogen occurs continuously or through a ``plasma phase transition'' (PPT) between a molecular state and a plasma state. For the first time, the new experiments constrain predictions for the PPT. We show here that the EOS model developed by Saumon and Chabrier can successfully account for the data, and we propose an experiment that should provide a definitive test of the predicted PPT of hydrogen. The usefulness of the chemical picture for computing astrophysical EOS and in modeling pressure ionization is discussed.Comment: 16 pages + 4 figures, to appear in High Pressure Researc

    Electron Delocalization in Gate-Tunable Gapless Silicene

    Full text link
    The application of a perpendicular electric field can drive silicene into a gapless state, characterized by two nearly fully spin-polarized Dirac cones owing to both relatively large spin-orbital interactions and inversion symmetry breaking. Here we argue that since inter-valley scattering from non-magnetic impurities is highly suppressed by time reversal symmetry, the physics should be effectively single-Dirac-cone like. Through numerical calculations, we demonstrate that there is no significant backscattering from a single impurity that is non-magnetic and unit-cell uniform, indicating a stable delocalized state. This conjecture is then further confirmed from a scaling of conductance for disordered systems using the same type of impurities.Comment: 6 pages, 3 figures, published versio

    Magnetic ordering and structural phase transitions in strained ultrathin SrRuO3_{3}/SrTiO3_{3} superlattice

    Full text link
    Ruthenium-based perovskite systems are attractive because their Structural, electronic and magnetic properties can be systematically engineered. SrRuO3_3/SrTiO3_3 superlattice, with its period consisting of one unit cell each, is very sensitive to strain change. Our first-principles simulations reveal that in the high tensile strain region, it transits from a ferromagnetic (FM) metal to an antiferromagnetic (AFM) insulator with clear tilted octahedra, while in the low strain region, it is a ferromagnetic metal without octahedra tilting. Detailed analyses of three spin-down Ru-t2g_{2g} orbitals just below the Fermi level reveal that the splitting of these orbitals underlies these dramatic phase transitions, with the rotational force constant of RuO6_6 octahedron high up to 16 meV/Deg2^2, 4 times larger than that of TiO6_6. Differently from nearly all the previous studies, these transitions can be probed optically through the diagonal and off-diagonal dielectric tensor elements. For one percent change in strain, our experimental spin moment change is -0.14±\pm0.06 μB\mu_B, quantitatively consistent with our theoretical value of -0.1 μB\mu_B.Comment: 3 figures, 1 supplementary material, accepted by Phys. Rev. Let

    Crystal growth and quantum oscillations in the topological chiral semimetal CoSi

    Get PDF
    We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures
    • …
    corecore