31,181 research outputs found

    The Luminosity - E_p Relation within Gamma--Ray Bursts and Implications for Fireball Models

    Full text link
    Using a sample of 2408 time-resolved spectra for 91 BATSE gamma-ray bursts (GRBs) presented by Preece et al., we show that the relation between the isotropic-equivalent luminosity (L_iso) and the spectral peak energy (E_p) in the cosmological rest frame, L_iso \propto E_p^2, not only holds within these bursts, but also holds among these GRBs, assuming that the burst rate as a function of redshift is proportional to the star formation rate. The possible implications of this relation for the emission models of GRBs are discussed. We suggest that both the kinetic-energy-dominated internal shock model and the magnetic-dissipation-dominated external shock model can well interpret this relation. We constrain the parameters for these two models, and find that they are in a good agreement with the parameters from the fittings to the afterglow data (abridged).Comment: 3 pages plus 5 figures, emulateapj style, accepted for publication in ApJ Letter

    Excitonic Instabilities and Insulating States in Bilayer Graphene

    Full text link
    The competing ground states of bilayer graphene are studied by applying renormalization group techniques to a bilayer honeycomb lattice with nearest neighbor hopping. In the absence of interactions, the Fermi surface of this model at half-filling consists of two nodal points with momenta K\mathbf{K}, K′\mathbf{K}', where the conduction band and valence band touch each other, yielding a semi-metal. Since near these two points the energy dispersion is quadratic with perfect particle-hole symmetry, excitonic instabilities are inevitable if inter-band interactions are present. Using a perturbative renormalization group analysis up to the one-loop level, we find different competing ordered ground states, including ferromagnetism, superconductivity, spin and charge density wave states with ordering vector Q=K−K′\mathbf{Q}=\mathbf{K}-\mathbf{K}', and excitonic insulator states. In addition, two states with valley symmetry breaking are found in the excitonic insulating and ferromagnetic phases. This analysis strongly suggests that the ground state of bilayer graphene should be gapped, and with the exception of superconductivity, all other possible ground states are insulating.Comment: 17 pages, 6 figures, 2 Tables, Added reference

    De Novo Genome Sequence of "Candidatus Liberibacter solanacearum" from a Single Potato Psyllid in California.

    Get PDF
    The draft genome sequence of "Candidatus Liberibacter solanacearum" strain RSTM from a potato psyllid (Bactericera cockerelli) in California is reported here. The RSTM strain has a genome size of 1,286,787 bp, a G+C content of 35.1%, 1,211 predicted open reading frames (ORFs), and 43 RNA genes

    Simulation and detection of Dirac fermions with cold atoms in an optical lattice

    Full text link
    We propose an experimental scheme to simulate and observe relativistic Dirac fermions with cold atoms in a hexagonal optical lattice. By controlling the lattice anisotropy, one can realize both massive and massless Dirac fermions and observe the phase transition between them. Through explicit calculations, we show that both the Bragg spectroscopy and the atomic density profile in a trap can be used to demonstrate the Dirac fermions and the associated phase transition.Comment: 4 pages; Published versio
    • …
    corecore