
An Agent-based DDM for High Level Architecture*

Gary Tan and Liang Xu Farshad Moradi Simon Taylor

National Univ of S 'pore Agency (FOI) Brunel University
School of Computing Swedish Defense Research Dept of Info. Sys. & Computing

Singapore 11 9260 172 90 Sweden Uxbridge UB8 3PH, UK
gtan C3comp.nus.edu.q farshad@foi.se simon. taylor@ brunel.ac. uk

Abstract

The Data Distribution Management (DDM) service is
one of the six services provided in the Runtime
Infrastructure (UTI) of High Level Architecture (HLA). Its
purpose is to perform data filtering and reduce irrelevant
data communicated between federates. The two DDM
schemes proposed for RTI, region-based and grid-based
DDM, are oriented to send as little irrelevant data to
subscribers as possible, but only manage to filter part of
this information and some irrelevant data is still being
communicated. In a previous paper [3], we employed
intelligent agents to perform data filtering in HLA,
implemented an agent-based DDM in UTI (AUTI) and
compared it with the other two filtering mechanisms. This
paper reports on additional experiments, results and
analysis using two scenarios, the A WACS sensing aircraft
simulation and the air traffic control simulation scenario.
Experimental results show that compared with other
mechanisms, the agent-based approach comniutiicates
only relevant data and minimizes network
communication, and is also comparable in terms of time
eflciency. Some guidelines on when the agent-based
scheme can be used are also given.

1. Introduction

The High Level Architecture (HLA) provides the
specification of a common technical architecture for
modeling and simulation in the US Department of
Defense (DoD), its primary goals being to facilitate
interoperability among simulations and to promote re-use
of simulations and their components. The HLA is
composed of three major components: (i) HLA rules; (ii)
HLA interface specification; and (iii) HLA object model
template [11.

The services of the Runtime Infrastructure (RTI) are
described by the HLA interface specification. The RTI is
a collection of software that provides common services

required by multiple simulation systems. These services
fall into six categories: federation management, object
management, declaration management, ownership
management , time management and datu distribution
management [I] .

The data distribution management (DDM) services
are employed by federates to assert properties of their
data or to specify their data requirements in terms of
user-defined spaces. The DDM controls the efficient
routing of information between federates to reduce the
amount of irrelevant data sent between federates and cut
network communication cost [1, 21. The two traditional
DDM mechanisms, i.e., the region-based mechanism and
grid-based mechanism, are both oriented towards this
purpose, but still suffer from several drawbacks. In a
previous paper 131, we try to avoid these drawbacks by
using agents to do accurate filtering so that the RTI
routes only relevant information and minimizes
communication. In our method, each time a federate
subscribes to some data, intelligent mobile agents are
launched to publishers of those data. These agents will
fetch the updated data, perform data filtering and then
send the subscriber the exact information that they
require. We implemented an agent-based DDM in the
RTI (ARTI) and compared it with the other two filtering
mechanisms. This paper reports on additional
experimental results and analysis using two scenarios,
the AWACS sensing aircraft simulation scenario and the
air traffic control simulation scenario.

This paper is organized as follows. Section 2
describes the two DDM mechanisms employed in RTI,
while section 3 describes the agent-based DDM filtering
mechanism and the design structure of ARTI. The
implementation issues of ARTI are discussed in section
4. Section 5 describes the two experiment scenarios, the
AWACS sensing aircraft and Air Traffic Control
scenarios, used to compare the three DDM mechanisms.
The experimental results and analyses are also provided
in this section. The conclusion is given in section 6.

* This research is supported by the NUS-MINDEF collaboration GR6757

0-7695-1104-X/01$10.00 0 2001 IEEE 75

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. DDM filtering mechanisms

The two main DDM data filtering mechanisms
currently employed in RTI are the region-based filtering
and the grid-based filtering, which are described briefly
here. The reader is referred to [3] for a more detailed
description.

2.1. Region-based filtering

The region-based filtering method uses a fundamental
construct called the routing space. The routing space is a
multi-dimensional coordinate system through which a
region is specified. A federate tells the RTI to deliver only
the data which fall within the extents of the region by
specifying a subscription region. By specifying an update
region with a particular object, a federate promises that
the data within the extents of this region will be published
when it tells the RTI to update its valueshttributes.

When an update region and subscription region of
different federates overlap, the RTI adds the subscribing
federate into the receiving federate group connected to the
update region. The data updated will be delivered to the
subscribing federate. Each time an update region (or
subscription region) is modified, the RTI does the
matching again and accordingly updates the receiving
federate group.

Every update region must be compared with all the
subscription regions to determine if they should be
updated. If the number of subscription regions and update
regions is high, the number of matches is also high.

2.2. Grid-based filtering

In grid-based filtering, the routing space is partitioned
into a grid of cells. Cells are used to efficiently specify the
overlapped part between a subscription region and an
update region. For each cell, a multicast group containing
subscribers whose regions overlap with that cell is
maintained. When a publisher’s update region overlaps
with a cell, the data associated with the update region will
then be delivered to the multicast group for that cell. As in
the region-based approach, during the simulation runtime
execution, the RTI will perform matching again and
adjust the multicast groups of the cells when it is notified
that a region is modified.

One problem with this method is that irrelevant data
may be sent due to subscription and update regions of
federate overlapping with a cell, but do not themselves
overlap.

2.3. Drawbacks of current approaches

Before DDM was introduced in the RTI, the data
distribution in HLA was based mainly on class

specification by employing the Declaration Management
(DM) services. Irrelevant information was generally
discarded at the receiving simulations in order to reduce
local processing loads. The region-based filtering
mechanism and grid-based filtering mechanisms define
federates’ interest in data as value-based. They however
have some obvious drawbacks. These are excessive cost
of critical network communication resources because of
irrelevant information, and inexact routing causing extra
processing in filtering at the receiving simulations’ side.

2.4. Related work

There has been much research done on the two main
DDM mechanisms, region-based DDM mechanism and
grid-based DDM mechanism. For example, Cohen and
Kemkes discussed various ways of using the DDM
services and studied their impact on performance [4].
Rak and Van Hook gave evaluation of the grid-based
relevance filtering [5] . Rizik’s research work [6] tried to
find an optimal geographic routing space cell size for a
specific simulation model. Boukerche et al [7] uses a
fixed grid, sender-based hybrid to reduce the multicast
groups to improve performance.

In a previous paper [3] , a new DDM filtering
mechanism based on agents was proposed. This
mechanism attempts to overcome the drawbacks
discussed previously. Influenced by the popularity of
intelligent agents, we noticed that the various properties
of agents, including autonomy, mobility, intelligence,
sociability and etc, may help to improve the efficiency of
the data filtering in the DDM and to overcome these
drawbacks. We incorporated the agent technology to the
DDM approach and implemented an agent-based DDM
filtering mechanism.

In this agent-based filtering mechanism, the RTI
delivers to data consumers exactly what they want by
using agents to perform exact data filtering in HLA. No
irrelevant information will be distributed in this new
DDM mechanism. Thus, the network communication is
minimized and the extra cost of the local processing
resources consumed to filter out irrelevant data is
eliminated.

Employing agents in the RTI data distribution
framework is previously discussed by Van Hook et al [8,
91. But in their work, agents are mostly used as an
auxiliary part of the data distribution system to collect
some useful information and to help form the multicast
group. One of their papers [9] mentions that mobile
agents may go to publishers’ LRC from subscribers’ to
fetch relevant data, but it gives no detail or method.

The simulation group at Brunel uses a novel agent-
based service distribution model called Thin Agents to
reduce network bandwidth in GRIDS, a generic run-time
infrastructure for distributed simulation [IO] .

76

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

3. Agent-based DDM

3.1. Architecture

The description of the agent-based RTI (ARTI) can be
found in [3]. We briefly describe the architecture here
again for clarity and completeness. We employed a totally
distributed RTI structure and the RTI services are
implemented in the RTI ambassador of each federate. The
design structure of the ARTI is shown in figure I .

In the HLA, federates make subscriptions to declare
their interest in the object attributes or interactions that
other federates own. When a subscription is made,
intelligent mobile agents are launched to the publishers of
those attributes and interactions. Whenever the publishers
update their object attributes or interactions, those agents
associated with them will fetch the data, perform data
filtering and then send the subscriber exactly what it
wants. At the same time, agents keep their internal
filtering parameters updated by receiving notification
from the subscribing federate once a region modification
is made.

When a federate calls the DDM services to subscribe
to some object class attributes or interaction classes with a
region, Sub-children are launched to the places where
they are most likely to find those data. That means the
Sub-children are sent out to the federates which publish
those data, according to the internal record of the system's
publication information. A SubMuster-agent is built to
manage those Sub-children.

When they have reached the (publishing) federates,
Sub-children communicate directly with the federate
environment, fetch the publishedlupdated data, perform
filtering for their owners (i.e., the subscribers which
launch them), then send the filtered results to the
subscribers.

In the ARTI, federates can change their subscription
regions by notifying their Sub-children of the new
subscription region. Upon receiving the notification of
region modification, the Sub-children modify their
internal filtering parameters accordingly. Sub-children
employ the new filtering parameters the next time they
perform data filtering. As a result, only the information
that falls into the new subscription region will be routed
to the subscribing federate.

It should be noted that no update regions exist in the
agent-based DDM. Since the agent deals with all the
updated data and deliver the data to its owner federate if
the data exactly fall into the subscription region of its
owner federates, no update region needs to be defined to
clarify the area where updated data will fall into. It is
different from the situation in region-based DDM and
grid-based DDM, where the data receiving federate group
is decided by the matching result between update and
subscription regions,

ARTI I ARTI

Network

Figure 1 : Design structure of agent-based RTI

3.2. Discussion

Compared with the other data filtering mechanisms, by
incorporating agent technology in the RTI,
0 Extra processing which has been devoted to filtering

by the receivers now is done by agents at the physical
location of senders, i.e., the publishing federates, on
behalf of the receivers.
Exact filtering by agents at the location of senders
leads to exact routing for the data from publisher to
subscribes.
Critical. network communication. is*
communicating only relevant data..

However, the agent-based DDM, mechanism has some
disadvantages. Firstly, the internal table of other
federates' publishing interest costs storage space. But
compared with the changing update regions and
subscription regions, i t is only a very small cost.
Secondly, launching agents to other federates needs a
period of time which may delay the program execution.
Fortunately, agents are launched only in the initialization
period of a simulation, and it will not affect the
federation execution progress.

Another disadvantage of the agent-based DDM occurs
in large-scale simulations. For a federation with large
numbers of federates, hundreds or thousands of filtering
agents may be sent out to one federate as a result of the
initial matching operation based on the DM services.
These large numbers of filtering agents, residing on one
federate machine and performing filtering from time to
time, will cause a heavy load to the federate machine.
The agent-based DDM mechanism will become very
inefficient in such cases of large-scale simulations.

4. Implementation issues

Our implementation is built on an MPP - the Fujitsu
AP3000/32, UNIX (r) System V, Release 4.0, and the
language used is C/C++. The communication

77

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

architecture is TCP based on the Fast Messages (FM)
interface provided by the Federated Simulations
Development Kit (FDK RTI-Kit) [I l l . The agents are
created and act in the environment of D’Agents 2.0 [121.
The Federated Simulations Development Kit (FDK) is a
software system that has been developed at Georgia Tech.
It comprises composable modules for building RTIs.
D’Agents is a mobile-agent system that is under
development at Dartmouth College and is used in several
information-retrieval and work-flow applications.
D’Agents is based on the scripting language Tc17.5 and
Tk4.1 and runs on standard Unix platforms.

The D’Agents system is still under development.
Currently, the agents’ communication is restricted to
between agents, and agents cannot communicate freely
with other environment resources. The primitives for
agents’ activity are also limited. This causes our agents to
be not as “intelligent” as it is desired especially when they
act against the changes of surrounding environment and
communicate with it. Because of this limitation, we
employ the socket method for the communication
between agents and other processing environment. A
federate process writes data to a socket, and the agents
fetch data from the socket.

Another implementation technical problem is that the
only variable format supported by Tcl agents (D’ Agents)
is STRING, as TCL/TK is a descriptive language. We
have to transform all the data of complex C/C++ data
structures to strings before transferring them to Tcl
agents, and vice versa. This method is slow and inefficient
and will degrade performance.

Because of the above technical problems, currently the
ARTI still has some limitations, especially in the time
latency when reflecting updated information at the
subscriber federates. These limitations need to be
overcome in the future by either improving the agent
interface, or by writing a custom-built agent tool-kit.

5. Experiment Scenario

The AWACS sensing aircraft [4] simulation scenario
and Air Traffic Control (ATC) 1141 simulation scenario
were used to test the ARTI and to compare the
efficiencies of agent-based DDM filtering mechanism
with the other two traditional DDM mechanisms.

5.1. Experiment scenario 1: AWACS

In the AWACS sensing aircraft scenario, as described
in [4], there are several aircraft and an AWACS circling
over an area. When some aircraft happens to fly into the
sensor range of the AWACS, i t is discovered by the
AWACS and its position is noticed by the AWACS.

5.1.1. Experiment assumptions

We assume all aircraft and the AWACS fly at
different randomly generated speeds from a randomly
generated initial position. Two federates are used, one
represents the AWACS, and the other represents the
aircraft. The subscription region of the AWACS can be
defined from its sensor range. In region-based and grid-
based DDM mechanisms, an update region is defined
around each aircraft’s position (there is no need for an
update region in the agent-based filtering mechanism, as
agents do exact filtering at the physical locations of the
publishers). The AWACS federate subscribes to the
aircraft information, but does not publish anything, and
the aircraft federate publishes its position, but does not
subscribe to any data.

The scenario is performed as a time-stepped
simulation [131. What the simulator calculates is the
system status at each time step but not the continuous
system moving process. Therefore the update and
subscription regions have to be carefully defined to
avoid missing the objects falling into the AWACS sensor
range in the period between two discrete time steps. In
our geographic routing space, we define the subscription
region to be equal to the sensor region plus the
maximum moving distance of the AWACS during the
time between two subsequent subscription region
modification requests. The update region is equal to the
aircraft’s maximum range during the time between two
subsequent update region modification requests.

In the simulation, the object attribute values (i.e., the
positions of the aircraft) are updated at each time step,
but the subscription region and the update regions (only
for region-based and grid-based DDM mechanisms) are
modified once per k time steps. The frequency of region
modification depends on the value of k.

5.1.2. Experimental results

Simulations are performed using ARTI, RTI with only
DM, RTI with region-based DDM and RTI with grid-
based DDM using different k values and the number of
communicated messages after filtering is observed. The
simulations are run on a Fujitsu AP3000 32-node
multiprocessor running Unix (r) System V, Release 4.0.
The AWACS federate and aircraft federate are run on
different nodes. Both federates are written in C++.

Table 1 gives the parameter sets used in the
simulations (for set A: k =1, set B: k=2, and set C: k=3).
The speeds of AWACS and aircraft are generated
randomly based on a fixed maximum speed. Their initial
positions are also randomly generated in the initialization
procedure. When testing the grid-based filtering
mechanism, the routing space is divided into a number of
grid-cells.

78

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Parameter
No. of Aircraft

Max Speed - Aircraft

Value
40

900.0 (kmh)

L I

Table 1 : Parameter table

Routing Space

5.1.3. DM vs. agent-based DDM

600*600(km’)

A simple comparison is made between the agent-based
DDM and the DM, which employs only a class-based
filtering without any DDM mechanisms. Table 2 gives the
test results. The simulation period is 100 time steps. K is
set to 3 in the agent-based filtering mechanism. Without
employing any DDM filtering mechanism, the DM is no
doubt much less efficient than the agent-based DDM and
communicates much more redundant messages.

I Filtering mechanism 1 No. of messages
I DM I 4000 I

Agent-based DDM (k=3) I 146
Table 2: Results of DM vs. agent-based DDM

5.1.4. Grid vs. region vs. agent-based

Simulations were conducted using the three DDM
mechanisms at different k values. For the grid-based
DDM, since its filtering efficiency largely depends on the
cell size, we tested different cell sizes and chose the one
that gave the least number of communicated messages [3].
Because at each run of the simulation the initial positions
and speeds of all the objects are randomly generated, the
filtering results for each run of simulation are not the
same. We therefore took replications for each parameter
set and calculated the average filtering results. Figure 2
shows the results of the three DDM mechanisms.

5.1.5. Analysis

As seen in the figure, as k increases, the number of
communicated messages of both the region-based and
grid-based DDM increases. This is because the
subscription region and the update region become larger
when k increases, thus increasing the possibility of area
overlap. This results in more messages being sent.

From the figure we can clearly see that much less
information is sent when using the agent-based DDM
filtering mechanism than by using grid-based or region-
based DDM mechanisms. The grid-based DDM and
region-based DDM may deliver irrelevant information in

addition to the data the subscribers require. However, the
agent-based DDM communicates only relevant data and
not redundant information. Thus, the agent-based DDM
mechanism improves the filtering efficiency of DDM
and minimizes network communication.

The number of communicated messages of agent-
based DDM for the different k values as shown in figure
2 are similar and increases slowly when k increases from
1 to 3. As in the cases of the region-based and grid-based
DDM, the increasing messages result from the increasing
subscription region. As the subscription region becomes
larger, the possibility for the aircraft falling into the
subscription region increases. However, since the agent-
based DDM routes only the required messages, the
numbers of routed messages do not vary much for
different k values for the same simulation scenario.

0 grid-based
DDM

region-
based DDM

0 agent-based
DDM

Figure 2: Number of communicated
messages for parameter sets A, B, C

The following table 3 shows the simulation
processing times of running the simulation with different
DDM mechanisms for k = 1. These processing times are
collected by running the simulations exclusively on the
nodes of Fujitsu AP3000, using the unix command rime.
Compared with the other two mechanisms, the
simulation with agent-based DDM takes a longer time.
This time latency comes mainly from the time costs for
launching agents in the initial period of simulation and
the technical problems we mentioned earlier in section 4.
Although the simulation with agent-based DDM has a
longer processing time than both the grid-based and
region-based DDM, they are at least of the same time
order. We anticipate that an improvement can be
expected if we can address these problems. From table 3,
we see that the grid-based DDM mechanism takes more
time than the region-based DDM mechanism. This can
be attributable to the processing cost of updating the
multicast groups of the cells when both the update
regions and subscription regions change dynamically
over time in the grid-based DDM.

79

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

DDM mechanism
Agent-based
Grid-based

I Region-based 1 23.537
Table 3: Simulation processing times (set A)

Simulation processing time (s)
30.5 13
27.914

5.2. Experiment scenario 2: air traffic control

(km, km, km)
Radar Range (km)

Subscription region(km’)
Speed of Aircraft

The air traffic control simulator is a non-military HLA
federation designed and developed to simulate air traffic
control (ATC) in a distributed environment [14]. In this
simulation model, each airport (denoted by APi in figure
3) is represented by a federate and controls a set of
aircraft objects. A radar is located at each airport and the
radar range (denoted by Ri) covers a portion of the
routing space. The aircraft (denoted by Ai) stays at an
airport for a random period of time, takes off, flies and
lands at its destination airport. At the destination, i t stays
again for a random period of time, selects the next
destination, takes off and lands. This process is performed
repeatedly. When some aircraft flies into the radar range
of any airport other than its own controller, it is
discovered and its position is noted by the airport.

This scenario differs from the first one in that the
subscribers (airports) are static and hence their
subscription regions do not change.

AP2(7500.0, 2000.0, 0.0)
4000.0

4000.0*4000.0
100.0

I -1

(k d t i m e step)
Sim Time (time steps)

k (time steps)

I 1 m

300
k=l , 2, 3

API

Figure 3: Air traffic control scenario

5.2.1. Experiment assumptions

In the experiment, we assume a simulation scenario of
two airports (API and AP2), where each airport controls
one aircraft. Two federates are designed for this scenario,
each federate representing one airport. The objects (the
aircraft) fly at a fixed speed, 100 km per time step,
starting from their controller airport. The radar range of
the airport is defined by the subscription region of the
airport federate. In the region-based and grid-based DDM
mechanisms, the update region is defined around the
aircraft’s current position. The airport federate subscribes
to the information of the aircraft controlled by the other

federate with its radar range. At the same time, it
publishes the position of the aircraft that it controls.

For the example depicted in figure 3, AP1 has control
of aircraft AI and AP2 has control of A2. API
subscribes to A2’s position with its subscription region
RI . At the same time, API publishes the position of
aircraft AI . Also, AP2 subscribes to Al’s position with
its subscription region R2, and at the same time, it
publishes the position of aircraft A2.

The experiment is performed as a time-stepped
simulation [13]. In the routing space, we define the
update region equal to the aircraft’s maximum moving
range during the time between two subsequent update
region modification requests. The subscription region is
the radar range of the airport.

In the simulation, the object attribute values (i.e., the
positions of the aircraft) are updated at each time step,
but the update regions (only for region-based and grid-
based DDM mechanisms) are modified once per k time
steps. The frequency of update region modification
depends on the value of k. The subscription region is
unchanged during the simulation.

During the air traffic control simulation, the radar
ranges of the airports are unchanged. Thus after the
initial setting up of the subscription region, there is no
need to modify the subscription region of the airport
during the simulation loop. This is different from the
algorithm for the AWACS sensing aircraft scenario,
where the subscription region of the moving AWACS is
changed once for each k time steps.

5.2.2. Experimental results

The same set of experiments is performed using this
scenario. The airport federates are run on different
nodes, the aircraft are considered objects owned by the
airport federates.

Table 4 gives the parameters we used in the
simulations. The initial positions of the aircraft are set in
the initialization procedure as the positions of their
controller airport. When testing the grid-based filtering
mechanism, the routing space is divided into a number of
grid-cells. Different values of k are used in the tests for
region-based and grid-based DDM mechanisms.

Routing Space (km2) 1 10000.0* 10000.0
Positions of airports I AP 1 (10.0, 0.0, 0.0);

80

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

5.2.3. DM vs. Agent-based DDM

The agent-based DDM is first compared with the DM.
The results when run for different simulation times are
listed in table 5. From the table it is easy to see that the
agent-based DDM again communicates much less
messages than the DM (about 50%). Agents in the agent-
based DDM send an airplane’s attributes only when the
airplane is in the radar range of the subscribing airport.
This is roughly haIf the time of the simulation, since the
aricraft fly from one airport to the other airport.

!

I (Time stens’l I I I I

Omessages received by AP1 p e s s a g e s received by AP2
Table 5: Results of DM vs. agent-based DDM

5.2.4. Grid vs. region vs. agent-based

We performed the air traffic control simulation using
the three DDM mechanisms using different k values. As
in the case of the AWACS sensing aircraft scenario, for
grid-based DDM, we divide the routing space into
different numbers of cells, and choose the one that gives
the least number of communicated messages.

5.2.5. Analysis

Figure 4 illustrates and summarizes the number of
received messages by APl and AP2 after filtering using
the grid-based, region-based and agent-based DDM
filtering mechanisms. For either airport, less information
is delivered by using the agent-based DDM filtering
mechanism than by using the grid-based or the region-
based DDM mechanisms. It is again shown that the agent-
based DDM mechanism uses minimal communication
network resources by sending only relevant information.

In the air traffic control scenario, although the
number of communication messages in the agent-based
DDM is less than in the grid-based DDM and the region-
based DDM, the improvement is not that great. This is
because of the unchanged subscription region and the
aircraft’s line of flight. The subscription regions are kept
unchanged during the simulation time. Only when the
aircraft flies close to the subscription region of its
subscribing airport will its update region overlap with the
subscription region, and the data of its attributes are then
delivered. Soon after this, the aircraft enters the radar
region, agents in agent-based DDM route the relevant data
of its attributes. Thus the time when the RTI begins to
deliver the required information in the grid-based DDM

and the region-based DDM is close to the time in the
agent-based DDM. So is the time when RTI stops
delivering information when the aircraft leaves a
subscription region. In such cases, the three mechanisms
differ little in the number of communicated messages.
However. in the grid-based and region-based
mechanisms, the frequent modification of update regions
is still a big cost, but does not give rise to any additional
network messages.

k=l k=2 k=3

170
168
166
164
162
160
158
156

0 grid-based
DDM

region-based
DDM

0 agent-based
DDM

U grid-based
DDM

region-based
DDM

U agent-based
DDM

k=l k=2 k=3

Figure 4: Received messages by AP1 (top) &
AP2 (bottom) using different k values

Table 6 gives the simulation processing times of
running the air traffic control simulation with the
different DDM mechanisms for k = 1 . These times are
collected by running the simulations exclusively on the
nodes of Fujitsu AP3000, using the unix command time.
The timing trend is similar to the AWACS sensing ’

aircraft scenario. The simulation using the agent-based
DDM runs for a longer time than the grid-based and the
region-based DDM mechanisms. Although i t performs
worse than the grid-based DDM and takes twice as long
as the region-based one, i t is still of the same time order.
As we mentioned in the AWACS sensing aircraft
scenario, this time latency is attributable to the
inefficiencies of interfacing the agents with the RTI
environment. Improvements for the agent-based
mechanism can be expected by improving this interface.

Another reason is because in this scenario, the
subscription regions do not change, and they are much
bigger than the update regions. The update regions also
overlap with the subscription regions for approximately
half the time, since the aircraft fly between airports. For
the grid-based DDM, this translates to less frequent
updates of the multicast groups, and hence less
processing overheads. For the region-based case, the
number of matching is low due to the small number of
objects.

81

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

DDM mechanism I Simulation processing time (s)
Agent-based I 15.992

I Region-I
Table 6

Grid-based I 11.612
Jased I 7.028

i: Simulation processing times for k = 1

6. Conclusion

The agent-based DDM filtering mechanism has been
proposed to overcome the drawbacks of region-based and
grid-based DDM by filtering only relevant information.
This paper has compared the three DDM filtering
schemes using two different scenarios, the AWACS
sensing aircraft and the air traffic control simulation
scenarios. In the AWACS sensing aircraft scenario, the
experimental results showed that the communicated
messages using the agent-based DDM were significantly
less than the messages of the region-based and grid-based
DDMs (less than one third of the communicated messages
of the other two mechanisms). The agent-based DDM was
much more efficient in filtering, routing only relevant
information and minimizing the network communication.
In the air traffic control simulation scenario, where the
subscription regions were large and remain fixed, and the
number of objects was small, the benefit of the agent-
based DDM was not that great compared to the first
scenario.

The agent-based DDM mechanism spends more
processing time than the other two mechanisms,
attributable to the inefficiency of the agent interface. An
improvement in time cost can be expected by improving
this interface. The performance is worse in the second
scenario where the overlap frequency between
subscription and update regions was low.

Thus the agent-based DDM is useful for scenarios
where the subscription regions change dynamically over
time, and the update and subscription region overlap
frequency is high. In such cases, the overheads associated
with updating multicast lists and sending irrelevant
messages will come into play.

During the implementation and testing of ARTI, we
observed that the information reflection at the subscriber
federates is delayed. This is mostly caused by the
technical problems discussed in section 4. The time
latency for information reflection limits the application of
the agent-based DDM in real time systems. In addition,
the agents in our implementation model can be more
“intelligent” and more flexible, providing a more
complete agent environment tool.

Other further work concerns the scalability of the
agent-based DDM. For the agent-based scheme to be
viable, its scalability when used in large-scale simulations
must be investigated. Improvements need to be made on
the design of ARTI to answer this question.

7. References
1.

2.

3.

4.

5.

6.

7 .

8.

9.

I O .

11.

12.

13.

14.

U.S. Department of Defense, “High Level Architecture
Interface Specification”, Version 1.3, 2 April 1998.
http://www.dmso.mil/

Katherine L. Morse, Jeffrey S. Steinman, “Data
Distribution Management in the HLA, Multidimensional
Regions and Physically Correct Filtering”, in Proceedings
of the Simulation lnteroperability Workshop, Spring 1997.
G.Tan, L.Xu, F.Moradi and YS Zhang, “An Agent-based
DDM Filtering Mechanism”, in proceedings of
MASCOTS, San Francisco, USA, Aug 2000.

Danny Cohen and Andreas Kemkes, “User-Level
Measurement of DDM Scenarios”, in proceeding of the
Simulation lnteroperability Workshop (SIW), Spring
1997.
Steven J. Rak and Daniel J. Van Hook, “Evaluation of
grid-based relevance fltering for multicast group
assignment”, in Proceedings of the Distributed Interactive
Simulation, 1996.
Pete Rizik et al., “Optimal geographic routing space cell
size in the FEDEP for prey-centric models”, in
Proceedings of the Simulation lnteroperability Workshop
(SIW), Spring 1998.
A.Boukerche, A.Roy & N.Thomas, “Dynamic Grid-Based
Multicast Group Assignment in Data Distribution
Management”, proceedings of 41h Workshop on
Distributed Simulation and Real-time Applications, San
Francisco, USA, August 2000.
Daniel J. Van Hook, Steven J. Rak, James 0. Calvin,
“Approaches to RTI Implementation of HLA Data
Distribution Management Services”, the 15th Workshop
on Standards for the lnteroperability of Distributed
Simulations, September 1996.

Van Hook, Daniel J., David P. Cebula, Steven J . Rak,
Carol J. Chiang, Paul N. DiCaprio, James 0. Calvin,
“Performance of STOW RITN Application Control
Techniques”, 141h Workshop on Standards for the
lnteroperability of Distributed Simulations, March 1996.
R.Sudra, T.Janahan, S.Taylor, “Distributed Supply Chain
Simulation in GRIDS”, proceedings of 2000 Winter
Simulation Conference, Florida, U.S.A., December 2000.
Georgia Tech Research Corporation, “FDK-Federated
Simulations Development Kit”, November 1998.
http://www.cc.gatech.edu/computing/pads/fdk. html
Dartmouth College, “D’ Agents”, November 1999.
Iittp://a~cnt.cs.dart~nourh.cdu

Gary Tan, Rassul Ayani, Yusong Zhang and Farshad
Moradi. “Grid-based Data Management in Distributed
Simulation”, in Proceedings of 33‘d Annual Simulation
Symposium, Washington, U.S.A., April 2000.
Farshad Moradi, Rassul Ayani, Gary Tan, “Object and
Ownership Management in Air Traffic Control
Simulations”, in Proceedings of IEEE Distributed
Interactive Simulation -Real Time ‘99, Maryland, U.S.A.,
October 1999.

82

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

http://www.dmso.mil
http://www.cc.gatech.edu/computing/pads/fdk

