87,167 research outputs found

    Effect of distribution of stickers along backbone on temperature-dependent structural properties in associative polymer solutions

    Full text link
    Effect of distribution of stickers along the backbone on structural properties in associating polymer solutions is studied using self-consistent field lattice model. Only two inhomogeneous morphologies, i.e., microfluctuation homogenous (MFH) and micelle morphologies, are observed. If the system is cooled, the solvent content within the aggregates decreases. When the spacing of stickers along the backbone is increased the temperature-dependent range of aggregation in MFH morphology and half-width of specific heat peak for homogenous solutions-MFH transition increase, and the symmetry of the peak decreases. However, with increasing spacing of stickers, the above three corresponding quantities related to micelles behave differently. It is demonstrated that the broad nature of the observed transitions can be ascribed to the structural changes which accompany the replacement of solvents in aggregates by polymer, which is consistent with the experimental conclusion. It is found that different effect of spacing of stickers on the two transitions can be interpreted in terms of intrachain and interchain associations.Comment: 10 pages, 4 figures. arXiv admin note: text overlap with arXiv:1202.459

    Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations

    Get PDF
    As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated

    A Class of Coupled KdV systems and Their Bi-Hamiltonian Formulations

    Full text link
    A Hamiltonian pair with arbitrary constants is proposed and thus a sort of hereditary operators is resulted. All the corresponding systems of evolution equations possess local bi-Hamiltonian formulation and a special choice of the systems leads to the KdV hierarchy. Illustrative examples are given.Comment: 8 pages, late

    Extension of Hereditary Symmetry Operators

    Full text link
    Two models of candidates for hereditary symmetry operators are proposed and thus many nonlinear systems of evolution equations possessing infinitely many commutative symmetries may be generated. Some concrete structures of hereditary symmetry operators are carefully analyzed on the base of the resulting general conditions and several corresponding nonlinear systems are explicitly given out as illustrative examples.Comment: 13 pages, LaTe

    A refined invariant subspace method and applications to evolution equations

    Full text link
    The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations was analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.Comment: 16 page
    corecore