38,414 research outputs found
Computing the Least-core and Nucleolus for Threshold Cardinality Matching Games
Cooperative games provide a framework for fair and stable profit allocation
in multi-agent systems. \emph{Core}, \emph{least-core} and \emph{nucleolus} are
such solution concepts that characterize stability of cooperation. In this
paper, we study the algorithmic issues on the least-core and nucleolus of
threshold cardinality matching games (TCMG). A TCMG is defined on a graph
 and a threshold , in which the player set is  and the profit of
a coalition  is 1 if the size of a maximum matching in 
meets or exceeds , and 0 otherwise. We first show that for a TCMG, the
problems of computing least-core value, finding and verifying least-core payoff
are all polynomial time solvable. We also provide a general characterization of
the least core for a large class of TCMG. Next, based on Gallai-Edmonds
Decomposition in matching theory, we give a concise formulation of the
nucleolus for a typical case of TCMG which the threshold  equals . When
the threshold  is relevant to the input size, we prove that the nucleolus
can be obtained in polynomial time in bipartite graphs and graphs with a
perfect matching
Wrinkling of Orthotropic Viscoelastic Membranes
This paper presents a simplified simulation technique for orthotropic viscoelastic films.
Wrinkling is detected by a combined stress-strain criterion and an iterative scheme searches
for the wrinkle angle using a pseudo-elastic material stiffness matrix based on a nonlinear
viscoelastic constitutive model. This simplified model has been implemented in
ABAQUS/Explicit and is able to compute the behavior of a membrane structure by superposition
of a small number of response increments. The model has been tested against
a published solution for a time-independent isotropic membrane under simple shear and
also against experimental results on StratoFilm 420 under simple shear
Comparative Study of Xenobiotic-Free Media for the Cultivation of Human Limbal Epithelial Stem/Progenitor Cells.
The culture of human limbal epithelial stem/progenitor cells (LSCs) in the presence of animal components poses the risk of cross-species contamination in clinical applications. We quantitatively compared different xenobiotic-free culture media for the cultivation of human LSCs. LSCs were cultured from 2 × 2 mm limbal tissue explants on denuded human amniotic membrane with different xenobiotic-free culture media: CnT-Prime (CnT-PR) supplemented with 0%, 1%, 5%, and 10% human serum (HS), embryonic stem cell medium (ESCM) alone or in combination with the standard supplemented hormonal epithelium medium (SHEM, control) at a 1:1 dilution ratio, and modified SHEM (mSHEM), in which cholera toxin and dimethyl sulfoxide (DMSO) were removed, isoproterenol was added, and the epidermal growth factor concentration was reduced. Several parameters were quantified to assess the LSC phenotype: cell morphology, cell growth, cell size, outgrowth size, and expression of the undifferentiated LSC markers cytokeratin (K) 14, and p63α high-expressing (p63αbright) cells, a mature keratinocyte marker K12, epithelial marker pancytokeratin (PanK), and stromal cell marker vimentin (Vim). Compared with the standard SHEM control, CnT-PR base medium was associated with a lower cell growth and reduction in the proportion of stem cells generated regardless of the amount of HS supplemented (p < 0.05); ESCM resulted in an increased proportion of PanK-/Vim+ stromal cells (p < 0.05) and a decreased proportion of p63αbright cells (p < 0.05); mSHEM supported a similar cell growth (p > 0.05), increased the number of small cells (diameter ≤12 μm; p < 0.05), and provided a similar proportion of p63αbright cells (p > 0.05). Among all the conditions tested, mSHEM was the most efficient and consistent in supporting the LSC phenotype and growth
Recommended from our members
Dynamic Behavior of Precast Concrete Beam-Column Sub-Assemblages with High Performance Connections Subjected to Sudden Column Removal Scenario
Unbonded posttensioned precast concrete (UPPC) structure has shown its excellent aseismic performance in laboratory tests and earthquake investigation. However, the progressive collapse behavior of UPPC subjected to column removal scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-column sub-assemblages were tested under a penultimate column removal scenario. The dynamic test results indicated that UPPC sub-assemblages have desirable load redistribution capacity to mitigate progressive collapse. The failure modes of the sub-assemblages observed in dynamic test were quite similar to that in static counterparts
Exchange Bias in Ferromagnetic/Compensated Antiferromagnetic Bilayers
By means of micromagnetic spin dynamics calculations, a quantitative
calculation is carried out to explore the mechanism of exchange bias (EB) in
ferromagnetic (FM)/compensated antiferromagnetic (AFM) bilayers. The
antiferromagnets with low and high Neel temperatures have been both considered,
and the crossover from negative to positive EB is found only in the case with
low Neel temperature. We propose that the mechanism of EB in FM/compensated AFM
bilayers is due to the symmetry broken of AFM that yields some net
ferromagnetic components.Comment: 3figure
Work Function of Single-wall Silicon Carbide Nanotube
Using first-principles calculations, we study the work function of single
wall silicon carbide nanotube (SiCNT). The work function is found to be highly
dependent on the tube chirality and diameter. It increases with decreasing the
tube diameter. The work function of zigzag SiCNT is always larger than that of
armchair SiCNT. We reveal that the difference between the work function of
zigzag and armchair SiCNT comes from their different intrinsic electronic
structures, for which the singly degenerate energy band above the Fermi level
of zigzag SiCNT is specifically responsible. Our finding offers potential
usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure
- …
