38,414 research outputs found

    Computing the Least-core and Nucleolus for Threshold Cardinality Matching Games

    Full text link
    Cooperative games provide a framework for fair and stable profit allocation in multi-agent systems. \emph{Core}, \emph{least-core} and \emph{nucleolus} are such solution concepts that characterize stability of cooperation. In this paper, we study the algorithmic issues on the least-core and nucleolus of threshold cardinality matching games (TCMG). A TCMG is defined on a graph G=(V,E)G=(V,E) and a threshold TT, in which the player set is VV and the profit of a coalition SVS\subseteq V is 1 if the size of a maximum matching in G[S]G[S] meets or exceeds TT, and 0 otherwise. We first show that for a TCMG, the problems of computing least-core value, finding and verifying least-core payoff are all polynomial time solvable. We also provide a general characterization of the least core for a large class of TCMG. Next, based on Gallai-Edmonds Decomposition in matching theory, we give a concise formulation of the nucleolus for a typical case of TCMG which the threshold TT equals 11. When the threshold TT is relevant to the input size, we prove that the nucleolus can be obtained in polynomial time in bipartite graphs and graphs with a perfect matching

    Wrinkling of Orthotropic Viscoelastic Membranes

    Get PDF
    This paper presents a simplified simulation technique for orthotropic viscoelastic films. Wrinkling is detected by a combined stress-strain criterion and an iterative scheme searches for the wrinkle angle using a pseudo-elastic material stiffness matrix based on a nonlinear viscoelastic constitutive model. This simplified model has been implemented in ABAQUS/Explicit and is able to compute the behavior of a membrane structure by superposition of a small number of response increments. The model has been tested against a published solution for a time-independent isotropic membrane under simple shear and also against experimental results on StratoFilm 420 under simple shear

    Comparative Study of Xenobiotic-Free Media for the Cultivation of Human Limbal Epithelial Stem/Progenitor Cells.

    Get PDF
    The culture of human limbal epithelial stem/progenitor cells (LSCs) in the presence of animal components poses the risk of cross-species contamination in clinical applications. We quantitatively compared different xenobiotic-free culture media for the cultivation of human LSCs. LSCs were cultured from 2 × 2 mm limbal tissue explants on denuded human amniotic membrane with different xenobiotic-free culture media: CnT-Prime (CnT-PR) supplemented with 0%, 1%, 5%, and 10% human serum (HS), embryonic stem cell medium (ESCM) alone or in combination with the standard supplemented hormonal epithelium medium (SHEM, control) at a 1:1 dilution ratio, and modified SHEM (mSHEM), in which cholera toxin and dimethyl sulfoxide (DMSO) were removed, isoproterenol was added, and the epidermal growth factor concentration was reduced. Several parameters were quantified to assess the LSC phenotype: cell morphology, cell growth, cell size, outgrowth size, and expression of the undifferentiated LSC markers cytokeratin (K) 14, and p63α high-expressing (p63αbright) cells, a mature keratinocyte marker K12, epithelial marker pancytokeratin (PanK), and stromal cell marker vimentin (Vim). Compared with the standard SHEM control, CnT-PR base medium was associated with a lower cell growth and reduction in the proportion of stem cells generated regardless of the amount of HS supplemented (p < 0.05); ESCM resulted in an increased proportion of PanK-/Vim+ stromal cells (p < 0.05) and a decreased proportion of p63αbright cells (p < 0.05); mSHEM supported a similar cell growth (p > 0.05), increased the number of small cells (diameter ≤12 μm; p < 0.05), and provided a similar proportion of p63αbright cells (p > 0.05). Among all the conditions tested, mSHEM was the most efficient and consistent in supporting the LSC phenotype and growth

    Exchange Bias in Ferromagnetic/Compensated Antiferromagnetic Bilayers

    Full text link
    By means of micromagnetic spin dynamics calculations, a quantitative calculation is carried out to explore the mechanism of exchange bias (EB) in ferromagnetic (FM)/compensated antiferromagnetic (AFM) bilayers. The antiferromagnets with low and high Neel temperatures have been both considered, and the crossover from negative to positive EB is found only in the case with low Neel temperature. We propose that the mechanism of EB in FM/compensated AFM bilayers is due to the symmetry broken of AFM that yields some net ferromagnetic components.Comment: 3figure

    Work Function of Single-wall Silicon Carbide Nanotube

    Full text link
    Using first-principles calculations, we study the work function of single wall silicon carbide nanotube (SiCNT). The work function is found to be highly dependent on the tube chirality and diameter. It increases with decreasing the tube diameter. The work function of zigzag SiCNT is always larger than that of armchair SiCNT. We reveal that the difference between the work function of zigzag and armchair SiCNT comes from their different intrinsic electronic structures, for which the singly degenerate energy band above the Fermi level of zigzag SiCNT is specifically responsible. Our finding offers potential usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure
    corecore