16 research outputs found

    How can ski resorts get smart? Transdisciplinary approaches to sustainable winter tourism in the European Alps

    Get PDF
    Climate change and the call for reduction of greenhouse gas emissions, the efficient use of (renewable) energy, and more resilient winter tourism regions, forces ski resorts across the European Alps to look for \u201csmart\u201d approaches to transition towards a sustainable, low-carbon economy. Drawing on the smart-city concept and considering the different historical developments of Alpine resorts, the Smart Altitude Decision-Making Toolkit was developed using a combination of an energy audit tool, a WebGIS, and collaborative and innovative living labs installed in Les Orres (France), Madonna di Campiglio (Italy), Krvavec (Slovenia), and Verbier (Switzerland). This step-by-step Decision-Making Toolkit enables ski resorts to get feedback on their energy demand, an overview of the locally available sources of renewable energy, and insights regarding their potential for improving their energy efficiency by low-carbon interventions. The Decision-Making Toolkit is suitable for knowledge transfer between stakeholders within living labs and moreover provides the flexibility for tailor-made low-carbon strategies adapting to the unique assets and situatedness of ski resorts

    Equivalence between Closed Connected n-G-Maps without Multi-Incidence and n-Surfaces

    No full text
    International audienc

    Equivalence Between Regular n-G-Maps and n-Surfaces

    No full text

    Marching Chains Algorithm for Alexandroff-Khalimsky Spaces

    No full text
    The Marching Cubes algorithm is a popular method which allows the rendering of 3D binary images, or more generally of iso-surfaces in 3D digital gray-scale images. Yet the original version does not give satisfactory results from a topological point of view, more precisely the extracted mesh is not a coherent surface. This problem has been solved in the framework of digital topology, through the use of different connectivities for the object and the background, and the definition of ad-hoc templates. Another framework for discrete topology is based on an heterogeneous grid (introduced by E.D. Khalimsky) which is an order, or a discrete topological space in the sense of P.S. Alexandroff. These spaces possess nice topological properties, in particular, the notion of surface has a natural definition. This article introduces a Marching Chains algorithm..
    corecore