27,023 research outputs found
The Architecture of a Novel Weighted Network: Knowledge Network
Networked structure emerged from a wide range of fields such as biological
systems, World Wide Web and technological infrastructure. A deeply insight into
the topological complexity of these networks has been gained. Some works start
to pay attention to the weighted network, like the world-wide airport network
and the collaboration network, where links are not binary, but have
intensities. Here, we construct a novel knowledge network, through which we
take the first step to uncover the topological structure of the knowledge
system. Furthermore, the network is extended to the weighted one by assigning
weights to the edges. Thus, we also investigate the relationship between the
intensity of edges and the topological structure. These results provide a novel
description to understand the hierarchies and organizational principles in
knowledge system, and the interaction between the intensity of edges and
topological structure. This system also provides a good paradigm to study
weighted networks.Comment: 5 figures 11 page
Anomalous Phase Transition in Strained SrTiO Thin Films
We have studied the cubic to tetragonal phase transition in epitaxial
SrTiO films under various biaxial strain conditions using synchrotron X-ray
diffraction. Measuring the superlattice peak associated with TiO octahedra
rotation in the low temperature tetragonal phase indicates the presence of a
phase transition whose critical temperature is a strong function of strain,
with T as much as 50K above the corresponding bulk temperature.
Surprisingly, the lattice constants evolve smoothly through the transition with
no indication of a phase change. This signals an important change in the nature
of the phase transition due to the epitaxy strain and substrate clamping
effect. The internal degrees of freedom (TiO rotations) have become
uncoupled from the overall lattice shape.Comment: 4 pages, 3 figures, REVTeX
Three-Dimensional Spin-Orbit Coupling in a Trap
We investigate the properties of an atom under the influence of a synthetic
three-dimensional spin-orbit coupling (Weyl coupling) in the presence of a
harmonic trap. The conservation of total angular momentum provides a
numerically efficient scheme for finding the spectrum and eigenfunctions of the
system. We show that at large spin-orbit coupling the system undergoes
dimensional reduction from three to one dimension at low energies, and the
spectrum is approximately Landau level-like. At high energies, the spectrum is
approximately given by the three-dimensional isotropic harmonic oscillator. We
explore the properties of the ground state in both position and momentum space.
We find the ground state has spin textures with oscillations set by the
spin-orbit length scale
Functional analysis of the Bunyamwera orthobunyavirus Gc glycoprotein
The virion glycoproteins Gn and Gc of Bunyamwera orthobunyavirus (family Bunyaviridae) are encoded by the M RNA genome segment and have roles in both viral attachment and membrane fusion. To investigate further the structure and function of the Gc protein in viral replication, we generated 12 mutants that contain truncations from the N terminus. The effects of these deletions were analysed with regard to Golgi targeting, low pH-dependent membrane fusion, infectious virus-like particle (VLP) formation and virus infectivity. Our results show that the N-terminal half (453 residues) of the Gc ectodomain (909 residues in total) is dispensable for Golgi trafficking and cell fusion. However, deletions in this region resulted in a significant reduction in VLP formation. Four mutant viruses that contained N-terminal deletions in their Gc proteins were rescued, and found to be attenuated to different degrees in BHK-21 cells. Taken together, our data indicate that the N-terminal half of the Gc ectodomain is dispensable for replication in cell culture, whereas the C-terminal half is required to mediate cell fusion. A model for the domain structure of the Gc ectodomain is proposed
The effect of 3He impurities on the nonclassical response to oscillation of solid 4He
We have investigated the influence of impurities on the possible supersolid
transition by systematically enriching isotopically-pure 4He (< 1 ppb of 3He)
with 3He. The onset of nonclassical rotational inertia is broadened and shifts
monotonically to higher temperature with increasing 3He concentration,
suggesting that the phenomenon is correlated to the condensation of 3He atoms
onto the dislocation network in solid 4He.Comment: 4 page
Mechanical breakdown of bent silicon nanowires imaged by coherent x-ray diffraction
We have developed a method of coherent x-ray diffractive imaging to surmount its inability to image the structure of strongly strained crystals. We used calculated models from finite–element analysis to guide an iterative algorithm to fit experimental data from a series of increasingly bent wires cut into silicon-on-insulator films. Just before mechanical fracture, the wires were found to contain new phase structures, which are identified as dislocations associated with crossing the elastic limit
Bragg projection ptychography on niobium phase domains
Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate
A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China
We describe a new dromaeosaurid theropod from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner
Mongolia. The new taxon, Linheraptor exquisitus gen. et sp. nov., is based on an exceptionally well-preserved, nearly
complete skeleton. This specimen represents the fifth dromaeosaurid taxon recovered from the Upper Cretaceous
Djadokhta Formation and its laterally equivalent strata, which include the Wulansuhai Formation, and adds to the known
diversity of Late Cretaceous dromaeosaurids. Linheraptor exquisitus closely resembles the recently reported Tsaagan
mangas. Uniquely among dromaeosaurids, the two taxa share a large, anteriorly located maxillary fenestra and a contact
between the jugal and the squamosal that excludes the postorbital from the infratemporal fenestra. These features suggest
a sister-taxon relationship between L. exquisitus and T. mangas, which indicates the presence of a unique dromaeosaurid
lineage in the Late Cretaceous of Asia. A number of cranial and dental features seen in L. exquisitus and T. mangas, and
particularly some postcranial features of L. exquisitus, suggest that these two taxa are probably intermediate in
systematic position between known basal and derived dromaeosaurids. The discovery of Linheraptor exquisitus is thus
important for understanding the evolution of some salient features seen in the derived dromaeosaurids
Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire
We investigated correlated photon-pair generation via spontaneous four-wave mixing in an integrated chalcogenideGe11.5As24Se64.5photonicnanowire. The coincidence to accidental ratio, a key measurement for the quality of correlated photon-pair sources, was measured to be only 0.4 when the photon pairs were generated at 1.9 THz detuning from the pump frequency due to high spontaneous Raman noise in this regime. However, the existence of a characteristic low-Raman window at around 5.1 THz in this material's Raman spectrum and dispersion engineering of the nanowire allowed us to generate photon pairs with a coincidence to accidental ratio of 4.5, more than 10 times higher than the 1.9 THz case. Through comparing the results with those achieved in chalcogenide As2S3waveguides which also exhibit a low Raman-window but at a larger detuning of 7.4 THz, we find that the position of the characteristic low-Raman window plays an important role on reducing spontaneous Raman noise because the phonon population is higher at smaller detuning. Therefore the ultimate solution for Raman noise reduction in Ge11.5As24Se64.5 is to generate photon pairs outside the Raman gain band at more than 10 THz detuning
Commuting Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable
We study the classical simulatability of commuting quantum circuits with n
input qubits and O(log n) output qubits, where a quantum circuit is classically
simulatable if its output probability distribution can be sampled up to an
exponentially small additive error in classical polynomial time. First, we show
that there exists a commuting quantum circuit that is not classically
simulatable unless the polynomial hierarchy collapses to the third level. This
is the first formal evidence that a commuting quantum circuit is not
classically simulatable even when the number of output qubits is exponentially
small. Then, we consider a generalized version of the circuit and clarify the
condition under which it is classically simulatable. Lastly, we apply the
argument for the above evidence to Clifford circuits in a similar setting and
provide evidence that such a circuit augmented by a depth-1 non-Clifford layer
is not classically simulatable. These results reveal subtle differences between
quantum and classical computation.Comment: 19 pages, 6 figures; v2: Theorems 1 and 3 improved, proofs modifie
- …
