8,288 research outputs found

    Podoplanin-positive cancer cells at the edge of esophageal squamous cell carcinomas are involved in invasion

    Get PDF
    Podoplanin (PDPN) is a well established lymphatic endothelial marker and has frequently been observed in cancer cells at the edge of cancer masses. Previous studies investigating the association between PDPN expression and patient prognosis have had contradictory results. In the present study, it was hypothesized that the different locations of PDPNpositive cells may explain these varying results. The present study aimed to focus on PDPN expression at the edge of esophageal cancer cell nests. In order to analyze the clinical significance of this PDPN expression, immunohistochemistry was performed using esophageal cancer tissue microarrays. PDPN expression at the edge of the cancer cell nest was found to be significantly associated with invasion (P<0.05) and poor prognosis (P<0.001) in patients with cancer. To further investigate the role of PDPN expression in cancer cells, the PDPN gene was cloned and transfected into esophageal squamous cell carcinoma (ESCC) cell lines. PDPN expression was also knocked down using small interfering RNA. PDPNpositive cancer cells were found to exhibit invasion characteristics. Thus, PDPN expression at the edge of a cancer cell nest may indicate invasion and represent a poor prognostic factor for ESCCs.published_or_final_versio

    Water Oxidation with Cobalt‐Loaded Linear Conjugated Polymer Photocatalysts

    Get PDF
    We report here the first examples of linear conjugated organic polymer photocatalysts that produce oxygen from water after loading with cobalt and in the presence of an electron scavenger. The oxygen evolution rates, which are higher than for related organic materials, can be rationalized by a combination of the thermodynamic driving force for water oxidation, the light absorption of the polymer, and the aqueous dispersibility of the relatively hydrophilic polymer particles. We also used transient absorption spectroscopy to study the best performing system and we found that fast oxidative quenching of the exciton occurs (picoseconds) in the presence of an electron scavenger, minimizing recombination

    HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice

    Get PDF
    The morphology of bulliform cells located on the upper epidermis of leaves is one of the most important cell structures affecting leaf shape. Although many mechanisms regulating the development of bulliform cells have been reported, the fine regulatory mechanisms governing this process have rarely been described. To identify novel components regulating rice leaf morphology, a mutant showing a constitutively rolling phenotype from the seedling stage to flowering, known as crm1-D, was selected for further analysis. Anatomical analyses in crm1-D were attributable to the size reduction of bulliform cells. The crm1-D was controlled by a single dominant nuclear gene. Map-based cloning revealed that Roc8, an HD zipper class IV family member, was responsible for the crm1-D phenotype. Notably, the 50-bp sequence in the 3′-untranslated region (3′-UTR) of the Roc8 gene represses Roc8 at the translational level. Moreover, the roc8 knockdown lines notably increased the size of bulliform cells. A series of assays revealed that Roc8 negatively regulates the size of bulliform cells. Unexpectedly, Roc8 was also observed to positively mediate lignin biosynthesis without incurring a production penalty. The above results show that Roc8 may have a practical application in cultivating materials with high photosynthetic efficiency and low lignin content

    Strategy evaluation and optimization with an artificial society toward a Pareto optimum

    Get PDF
    Strategy evaluation and optimization in response to troubling urban issues has become a challenging issue due to increasing social uncertainty, unreliable predictions, and poor decision-making. To address this problem, we propose a universal computational experiment framework with a fine-grained artificial society that is integrated with data-based models. The purpose of the framework is to evaluate the consequences of various combinations of strategies geared towards reaching a Pareto optimum with regards to efficacy versus costs. As an example, by modeling coronavirus 2019 mitigation, we show that Pareto frontier nations could achieve better economic growth and more effective epidemic control through the analysis of real-world data. Our work suggests that a nation’s intervention strategy could be optimized based on the measures adopted by Pareto frontier nations through large-scale computational experiments. Our solution has been validated for epidemic control, and it can be generalized to other urban issues as well

    Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem

    Full text link
    We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB) equations, i.e. scalar conservation laws with diffusive-dispersive regularization. We review the existence of traveling wave solutions for these two classes of evolution equations. For classical equations the traveling wave problem (TWP) for a local KdVB equation can be identified with the TWP for a reaction-diffusion equation. In this article we study this relationship for these two classes of evolution equations with nonlocal diffusion/dispersion. This connection is especially useful, if the TW equation is not studied directly, but the existence of a TWS is proven using one of the evolution equations instead. Finally, we present three models from fluid dynamics and discuss the TWP via its link to associated reaction-diffusion equations

    Trajectory optimization of multiple quad-rotor UAVs in collaborative assembling task

    Full text link
    A hierarchic optimization strategy based on the offline path planning process and online trajectory planning process is presented to solve the trajectory optimization problem of multiple quad-rotor unmanned aerial vehicles in the collaborative assembling task. Firstly, the path planning process is solved by a novel parallel intelligent optimization algorithm, the central force optimization-genetic algorithm (CFO-GA), which combines the central force optimization (CFO) algorithm with the genetic algorithm (GA). Because of the immaturity of the CFO, the convergence analysis of the CFO is completed by the stability theory of the linear time-variant discrete-time systems. The results show that the parallel CFO-GA algorithm converges faster than the parallel CFO and the central force optimization-sequential quadratic programming (CFO-SQP) algorithm. Then, the trajectory planning problem is established based on the path planning results. In order to limit the range of the attitude angle and guarantee the flight stability, the optimized object is changed from the ordinary six-degree-of-freedom rigid-body dynamic model to the dynamic model with an inner-loop attitude controller. The results show that the trajectory planning process can be solved by the mature SQP algorithm easily. Finally, the discussion and analysis of the real-time performance of the hierarchic optimization strategy are presented around the group number of the waypoints and the equal interval time

    Delivery of siHIF-1α to reconstruct tumor normoxic microenvironment for effective chemotherapeutic and photodynamic anticancer treatments

    Get PDF
    The tumor hypoxic microenvironment not only induces genetic and epigenetic changes in tumor cells, immature vessels formation for oxygen demand, but also compromises the efficiency of therapeutic interventions. On the other hand, conventional therapeutic approaches which kill tumor cells or destroy tumor blood vessels to block nutrition and oxygen supply usually facilitate even harsher microenvironment. Thus, simultaneously relieving the strained response of tumor cells and blood vessels represents a promising strategy to reverse the adverse tumor hypoxic microenvironment. In the present study, an integrated amphiphilic system (RSCD) is designed based on Angiotensin II receptor blocker candesartan for siRNA delivery against the hypoxia-inducible factor-1 alpha (HIF-1α), aiming at both vascular and cellular "relaxation" to reconstruct a tumor normoxic microenvironment. Both in vitro and in vivo studies have confirmed that the hypoxia-inducible HIF-1α expression is down-regulated by 70% and vascular growth is inhibited by 60%. The "relaxation" therapy enables neovascularization with more complete and organized structures to obviously increase the oxygen level inside tumor, which results in a 50% growth inhibition. Moreover, reconstruction of tumor microenvironment enhances tumor-targeted drug delivery, and significantly improves the chemotherapeutic and photodynamic anticancer treatments.Drug Delivery Technolog
    corecore