40,906 research outputs found
Recommended from our members
Multi-layer configuration for the cathode electrode of polymer electrolyte fuel cell
This paper conducts a one-dimensional theoretical study on the electrochemical phenomenon in the dual-layer cathode electrode of polymer electrolyte fuel cells (PEFCs) with varying sub-layer thicknesses, and further extends the analysis to a triple-layer configuration. We obtain the explicit solution for a general dual-layer configuration with different layer thicknesses. Distributions of the key quantities such as the local reaction current and electrolyte overpotential are exhibited at different ratios of the ionic conductivities, electrochemical kinetics, and layer thicknesses. Based on the dual-layer approach, we further derive the explicit solutions for a triple-layer electrode. Sub-layer performances are plotted and compared. The results indicate that the layer adjacent to the electrolyte membrane may contribute a major part of the electrode faradic current production. The theoretical analysis presented in this paper can be applied to assist electrode development through complicated multi-layer configuration for cost-effective high performance electrodes. © 2010 Elsevier Ltd
Temporal and Spectral Correlations of Cyg X-1
Temporal and spectral properties of X-ray rapid variability of Cyg X-1 are
studied by an approach of correlation analysis in the time domain on different
time scales. The correlation coefficients between the total intensity in 2-60
keV and the hardness ratio of 13-60 keV to 2-6 keV band on the time scale of
about 1 ms are always negative in all states. For soft states, the correlation
coefficients are positive on all the time scales from about 0.01 s to 100 s,
which is significantly different with that for transition and low states.
Temporal structures in high energy band are narrower than that in low energy
band in quite a few cases. The delay of high energy photons relative to low
energy ones in the X-ray variations has also been revealed by the correlation
analysis. The implication of observed temporal and spectral characteristics to
the production region and mechanism of Cyg X-1 X-ray variations is discussed.Comment: 17 pages, 6 figures included, to appear in Ap
KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.
KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations
Escherichia coli of sequence type 3835 carrying blaNDM-1, blaCTX-M-15, blaCMY-42 and blaSHV-12
New Delhi metallo-β-lactamase (NDM) represents a serious challenge for treatment and public health. A carbapenem-resistant Escherichia coli clinical strain WCHEC13-8 was subjected to antimicrobial susceptibility tests, whole genome sequencing and conjugation experiments. It was resistant to imipenem (MIC, >256 μg/ml) and meropenem (MIC, 128 μg/ml) and belonged to ST3835. blaNDM-1 was the only carbapenemase gene detected. Strain WCHEC13-8 also had a plasmid-borne AmpC gene (blaCMY-42) and two extended-spectrum β-lactamase genes (blaCTX-M-15 and blaSHV-12). blaNDM-1 and blaSHV-12 were carried by a 54-kb IncX3 self-transmissible plasmid, which is identical to plasmid pNDM-HF727 from Enterobacter cloacae. blaCMY-42 was carried by a 64-kb IncI1 plasmid and blaCTX-M-15 was located on a 141-kb plasmid with multiple F replicons (replicon type: F36:A4:B1). blaCMY-42 was in a complicated context and the mobilisation of blaCMY-42 was due to the transposition of IS Ecp1 by misidentifying its right-end boundary. Genetic context of blaNDM-1 in strain WCHEC13-8 was closely related to those on IncX3 plasmids in various Enterobacteriaceae species in China. In conclusion, a multidrug-resistant ST3835 E. coli clinical strain carrying blaNDM-1, blaCTX-M-15, blaCMY-42 and blaSHV-12 was identified. IncX3 plasmids may be making a significant contribution to the dissemination of blaNDM among Enterobacteriaceae in China
- …